Sustainable logistic plan for the dynamic distribution of massive mining waste
DOI:
https://doi.org/10.21701/bolgeomin.132.4.008Keywords:
cellular automata, geographic information system, regional planning, sustainable mining, waste managementAbstract
In mining, the decrease in the quality of grades has led to further deepening of the existing deposits, determining the existence of a greater quantity of waste, increasing the probability of contact between the waste and the environment, communities and productive soils. For this reason, we propose new logistics to organize mining spaces, using multi–criteria evaluation techniques, risk assessment and the integration of spatial data within the geographic information system (GIS) to determine the optimal locations of industrial mining waste deposits. These optimal locations consider multiple factors such as geological, physical, territorial and environmental characteristics, soil quality and profitability. We also define a sustainable logistic plan for the dynamic distribution of waste using cellular automata, evaluating the interaction of a determined rhythm of waste production, with the dynamic variable of the wind. In conclusion, we have created a new methodology of systematic vision for the planning and territorial ordering of future mining projects.
Downloads
References
Adamatzky, A. 1994. Identification of cellular automata, Taylor & Francis Ltd.
Barredo, B.J. 1996. Geographic Information System and multi-criteria evaluation in the territorial ordering. RA-MA Editorial, Madrid, 279 p.
Benavente, A. 2006. Predicción del crecimiento urbano mediante sistemas de información geográfica y modelos basados en autómatas celulares. GeoFocus, 6, 81-112.
Chang, N.B., Parvathinathan, G. and Breedenc J.B. 2008, Combining GIS with fuzzy multicriteria decision- making for landfill siting in a fast-growing urban region, Journal of Environmental Management, 87, 139-153. https://doi.org/10.1016/j.jenvman.2007.01.011 PMid:17363133
Donevska, K., Gorsevski, P., Jovanovski, M. and Pesevsky, I. 2012. Regional non - hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems, Environmental Earth Sciences, 67, 121 - 131. https://doi.org/10.1007/s12665-011-1485-y
Echavarría, C. 2004. Transacciones complejas entre el potencial y lo viable, Procesos globales, serie Minería y Desarrollo Sustentable, Publisher: Iniciativa de Investigación sobre Políticas Mineras (IIPM) del International Development Research Centre (IDRC), Canadá, 2004, Volume 3.
Encina, V. and Pérez, M. 2016. Holistic model in sustainable mining: a paradigm to face the climate change. XXXVII National conference and XXII International conference of geography: geography for the human sustainable human development, Chile, 24 p. Fundación Terram, 12/06/2019, https://www.terram.cl/2016/03/catastro-de-los-relaves-mineros-
del-norte-de-chile-antofagasta/
Giardina, M. and Buffa, P. 2018. A new approach for modeling dry deposition velocity of particles. Atmospheric Environment, 180, 11-22. https://doi.org/10.1016/j.atmosenv.2018.02.038
Henríquez, C. and Qüense, J. 2010. Multi-criteria/Multi- Objective evaluation applied to land use/cover in Chillán watershed, FONDECYT Project. 17/05/2019, https://goo.gl/PW5WoV.
Infraestructura de Datos Espaciales (IDE), 12/06/2019, http://www.geoportal.cl/visorgeoportal/
Irwin, J. 1979. A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability. Atmospheric Environment, 13, 191-194. https://doi.org/10.1016/0004-6981(79)90260-9
Jiménez, A. and Posadas A.M. 2004. Sismicidad, entropía y autómatas celulares: patrones sísmicos de la Península Ibérica, Universidad de Almería servicio de publicaciones. Royal Metereological Society, The Beaufort scale, how is wind speed measured?, 21/10/2019, https:// www.rmets.org/resource/beaufort-scale
Saaty, T. 1980. The analytic hierarchy process. McGraw - Hill, New York. https://doi.org/10.21236/ADA214804
Saaty, T. 1990. How to make a decision: The Analytic Hierarchy Process, European Journal of Operational Research, 48, 9-26. https://doi.org/10.1016/0377-2217(90)90057-I
Siddiqui, M., Everett, J.M. and Vieux, B. E. 1996, Landfill siting using Geographic Information Systems: a demonstration, Journal Environmental Engineering, 122, 515-523. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:6(515)
United Nations, Report of the World Commission on Environment and Development, "Our common future", 07/06/2019, https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.