Gold production from refractory minerals in the Pyritic Belt

Authors

  • S. del Barrio Martín Instituto Geológico y Minero de España
  • R. Martínez Orio Instituto Geológico y Minero de España
  • A. Sánchez Universidad de Murcia

DOI:

https://doi.org/10.21701/bolgeomin.130.2.007

Keywords:

bioleaching, cyanidation, hydrometallurgy, gold, Pyrite Belt

Abstract


The Pyritic Belt is a world class metalogenetic province, with more than 70 known deposits of volcanogenic massive sulphides. These deposits contain relevant resources of sulphur, iron, basic metals and, to a lesser extent, gold and silver. The Spanish Geological Survey (IGME) has recently played a main role in several activities related to the research, exploration and production of gold. As a part of this public research, some of the developments of IGME in the field of hydrometallurgy have been dedicated to the alternative treatment of refractory gold ores, which are quite abundant in the Pyritic Belt. These treatments aim to recover the gold contained in such ores, plus the extraction of any other metal that may lead to an economic benefit, thus reducing production costs. To achieve this goal, some traditional treatments such as cyanidation may be used in combination with innovative ones, such as high pressure acid leaching, oxidizing roasting and bioleaching.

Downloads

Download data is not yet available.

References

Adams, M. 2005. Advances in Gold Ore Processing. Guildford, Australia: Developments in mineral Processing.

Alvarez, J.L. 1996. Revisión crítica de los procesos de beneficio de los sulfuros complejos. Boletín Geológico y Minero, Vol. 107-3 y 4, 359-372.

Ballester, A., Verdeja, L., Sancho, J. 2000. Metalurgia Extractiva Vol I. Fundamentos. Ed. Síntesis. España.

Ballester, A. 2005. Fundamentos y Perpectivas de las Tenologías Biomineras. Mecanismo de la Lixiviacion. Capítulo 1, 9-24.

Beattie, M.J. y Raudsepp, R. 1988 The Arseno Processan update, Proc. Of Annual Meeting of Canadian Institute of Min. and Metal, Ad. Monten, Canadá.

Beattie, M. J. y Ismay, A. 1990. Appliying The Redox Process to arsenical concentrates, Journal of Metals, January, 31-35. https://doi.org/10.1007/BF03220520

Berezowski, R., Collins, M., Kerfoot, D., y Torres, N. 1991. JOM, Feb., 9-15. Boyle, R.W. 1987. Gold. History and Genesis of Deposists. Van Nostrand Reinhold. Reinhold, New York, 675 pp.

Chen, B. y Reddy, R.G. 1990. Roasting Characteristics of Refractory Gold Ores. Advances in Gold and Silver Processing. Processing Symposium At GoldTech4. SME-AIME. Reno, NV (EEUU, 201-214.

Demopoulos, G.P y Papangelakis, V.G. 1989. CIM Bulletin, 85-91 Fair, K.J., et al. 1986. Options in the Nitrox Process, Proc. Int. Symp. On Gold Metall., Conc. Inst. Min. Metall., 279-291. https://doi.org/10.1016/B978-0-08-035882-6.50035-2

Fleming, C.A. 1992. Hidrometallurgie, 30, 1-3. 127. Hong Yon Sohn y Rajendra P. Goel. 1979. Principles of Roasting, Minerals Sci. Engineering, Vol 11, Nº 3.

Iglesias, N., Carranza, F. and Palencia, I. 1998. La biolixiviación como pretratamiento de menas auríferas refractarias en matriz de sulfuros. Revista de Metalurgia, Madrid, 34. https://doi.org/10.3989/revmetalm.1998.v34.i1.656

Iglesias, N. and Carranza, F. 1996. Treatment of a gold bearing arsenopyrite concéntrate by ferric sulphate leaching. Minerals Engineering. Elsevier. March, 317-330. https://doi.org/10.1016/0892-6875(96)00016-7

Iglesias, N. and Carranza, F. 1994. Refractory gold bearing ores: a review of treatment methods and recent advances in biotechnological technoques. Hydrometallurgy. Elsevier. January, 383-395. https://doi.org/10.1016/0304-386X(94)90074-4

ITGE, 1994. Minería Química. Ed.Instituto Tecnológico Geominero de España.

IGME. 1994. Estudio mineralúrgico preliminar de recuperación de oro contenido en el carbonatado de Tharsis, Doc. ITGE nº 1389.

IGME. 1996. Estudio mineralúrgico de recuperación del oro y cobalto en muestras del stocwork de Tharsis. Doc. IGME nº 1405.

IGME. 1997. Tratamiento en planta piloto de concentrados de cobre de Migollas.

IGME. 2003, 2004, 2006. Investigaciones tecnológicas en Planta Piloto Hidrometalúrgica de Tharsis aplicable a los minerales de la Faja Pirítica. Informe interno IGME.

IGME, 2011. Cartografía de recursos minerales de Andalucía. Instituto Geológico y Minero de España y Consejería de Economía, Innovación y Ciencia, Junta de Andalucia, 594 pp.

IGME, 2014, http://www.igme.es/PanoramaMinero/actual/ORO_14.pdf

La Brooy, S.R., Linge, H.G., and Walker, G.S. 1994. Minerals Engineering. 7, 1213. https://doi.org/10.1016/0892-6875(94)90114-7

Leistel, J.M., Marcoux, E., Deschamps., Y, and Joubert, M. 1998. Antithetic behaviour of gold in the volcanogenic massive sulphide deposits of the Iberian Pyrite Belt. Mineralium Deposita, 33, 82-97. https://doi.org/10.1007/s001260050134

Leistel, J.M., Marcoux, E., Thièblemont, D., Quesada, C., Sánchez, A., Almodóvar, G.R., Pascual, E. and Sáez, R. 1988. The volcanic hosted massive sulphide deposits of the Iberian Pyrite Belt. Mineralium Deposita, 33, 2-30. https://doi.org/10.1007/s001260050130

Marcoux, E., Moëlo, Y. and Leistel, J.M. 1996. Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Mineralium Deposita, 31, 1-26. https://doi.org/10.1007/BF00225392

Long, H.G. and Dixon, D. 2004. Pressure oxidation of pyrite in sulfuric acid media a Kinetic study. Hidrometallurgy, 73, 3-4, 335-349. https://doi.org/10.1016/j.hydromet.2003.07.010

Marcoux, E. Moelo, Y., and Leistel, J.M. 1996. Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Miner. Dep, 31: 1-26. https://doi.org/10.1007/BF00225392

Marsden, J. and House, C. 2006. The Chemistry of Gold Extraction. Ed. Ellis Horwood Series.

Norwood, A.F., 1939. Roasting and treatment of auriferous flotation concentrate. Inst. Min. and Met. Proc. N116, 391-412.

Papangelakis, V. and Demopoulos, G. 1989. Recent Advances in Refractory Processing. CIM Bulletin. 82 (931), 85-91.

Pardave, W. and Beltrán, A. 2007. Lixiviación de mineral aurífero de vetas Santander, con sales oxidantes en medio ácido. Sciencia y Technica año XIII, 36. Universidad Tecnológica de Pereira.

Peters, E. 1992. Hidrometallurgical process innovation. Hidrometallurgy 29, 431-459. https://doi.org/10.1016/0304-386X(92)90026-V

Rodriguez,,Y., et al. 2001. La biolixiviación al comienzo del siglo XXI. Rev. Metal. Madrid, 37, 616-627. https://doi.org/10.3989/revmetalm.2001.v37.i5.528

Ruiz de Almodóvar, G. and Sáez, R. 1992. Yacimientos de sulfuros masivos de la Faja Pirítica Sur Ibérica. In: García Guinea, J. and Martínez Frías, J. (coord.) Recursos minerales de España.CSIC, Madrid, 1309-1324.

Strauss and J.S. Beck, J.S. 1990. Gold mineralisations in the SW Iberian Pyrite Belt G.K. Mineral. Deposita 25, 237-245. https://doi.org/10.1007/BF00198992

Udupa, A., Kawatra, S., and Prasad, M., 1990. Developments in gold leaching: a literatura survey. Mineral Processing and Extractive Metallurgy Review, 7, 115-135. https://doi.org/10.1080/08827509008952669

Van Aswegen, P.C. 1993. Pro. Biomine 93. Australian Mineral Foundation, Adelaida, Australia, Cap 15.

Van Lierde. 2002. Fundements des procédés pyrométallurgiques. Universite Catholique de Louvain.

Velasco Roldán, F. 2014. El oro asociado a los sulfuros masivos de la Faja Pirítica Ibérica. Macla. Revista de la Sociedad Española de Mineralogía, 19.

Yannopoulos, J.C. 1991. The Extractive Metallurgy of Gold. Treatment of refractory gold ores. 79-114. Van Nostrand Reinhold, N.Y. 79-114. https://doi.org/10.1007/978-1-4684-8425-0_5

Downloads

Published

2019-06-30

How to Cite

del Barrio Martín, S., Martínez Orio, R., & Sánchez, A. (2019). Gold production from refractory minerals in the Pyritic Belt. Boletín Geológico Y Minero, 130(2), 341–359. https://doi.org/10.21701/bolgeomin.130.2.007

Issue

Section

Articles