Vulnerability assessment of the Toluca Valley aquifer combining a parametric approach and advective transport

Authors

  • J. Gárfias Universidad Autónoma del Estado de México - Facultad de Ingeniería (CIRA)
  • H. Llanos Universidad del País Vasco - Departamento Geodinámica
  • R. Franco Universidad Autónoma del Estado de México - Facultad de Ingeniería (CIRA)
  • R. Martel Institut National de la Recherche Scientifique - Centre Éau, Terre & Environnement

DOI:

https://doi.org/10.21701/bolgeomin.128.1.002

Keywords:

vulnerability, groundwater protection, numerical modelling, DRASTIC, Toluca valley

Abstract


Groundwater vulnerability assessment is an important task in water resources and land management. Depending on the availability of data and the complexity of the hydrogeological conditions, different approaches can be adopted. As an alternative, this study involves the use of a combined approach based on vulnerability methods and advective particle tracking to better understand the susceptibility to contamination in the Toluca valley aquifer. An intrinsic vulnerability map (DRASTIC) was used to identify areas that are more susceptible to groundwater contamination. To estimate advective particle tracking, we developed a 3D flow model using VisualModflow and MODPATH to describe the regional flow of groundwater. The vulnerability map demonstrates the problematic application and interpretation of the qualitative vulnerability method of the parametric system group, which indicates a difference of approximately 23% when compared with the modified vulnerability map. Potential contamination sources based on landfill sites were comparatively high; approximately 76% are located in areas that could be susceptible to contamination through vertical infiltration, especially those that are located along the Lerma system of wells. Industrial parks located in the centre of the valley (83%), where continuous extraction of groundwater and land subsidence occurs, have been classified as high vulnerability zones, increasing the risk of contaminants from surface sources reaching the groundwater. In order to understand the susceptibility to contamination in the aquifer, various delineation approaches should be adopted and all the results that validate each other should be considered, thus making a good strategy for implementing different degrees of protection measures.

Downloads

Download data is not yet available.

References

Alaniz-Álvarez, S.A. y Nieto-Samaniego, A.F. 2005. El sistema de fallas Taxco-San Miguel de Allende y la Faja Volcánica Trans-Mexicana, dos fronteras tectónicas del centro de México activas durante el Cenozoico. Boletín de la Sociedad Geológica Mexicana, Volumen Conmemorativo del Centenario, LVII (1), 65-82. https://doi.org/10.18268/BSGM2005v57n1a4

Aller, L., Ennet, T., Leher, J.H., Petty, R.J. y Hackett, G. 1987. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological settings. EPA/600/2-87-036, 455 pp.

Ariel Consultores. 1996. Estudio de Simulación Hidrodinámica y Diseño Óptimo de las Redes de Observación de los acuíferos de Calera, San Luis Potosí y Toluca. (Tomo 3: Acuífero de Toluca). Ariel Consultores, S.A., México, D.F., 308 p.

ESRI. 1998. Introduction to ArcView GIS. Environmental Systems Research Institute, Educational Services.

EVREN. 1998. Vulnerabilidad a la contaminación de las aguas subterráneas por actividades urbanísticas en la Comunidad Valenciana. Evaluación de Recursos Naturales S.A., Pub. de Divulgación Técnica, Colección Cartografía Temática, Valencia, España, 58 pp.

Brouyère, S., Jeannin, P.Y., Dassargues, A., Golscheider, N., Popescu, I.C., Sauter, M., Vadillo, I. y Zwahlen, F., 2001, Evaluation and validation of vulnerability concepts using a physically based approach, Proc. of the 7th Conf. on Limestone Hydrology and Fissured Media, J. Mudry & F. Zwahlen (Eds.), Sciences et Techniques de l'Environnement, Université de Franche-Comté, Mémoire n°13, pp. 67-72.

Calderhead, A., Martel, R., Gárfias, J., A. Rivera, A. y Therrien, R. 2012b. Sustainable Management for Minimizing Land Subsidence of an Over-Pumped Volcanic Aquifer System: Tools for Policy Design. Water Resources Management, 26, 7, 1847-1864. https://doi.org/10.1007/s11269-012-9990-7

Calderhead, A., Martel, R., Gárfias, J., Rivera, A. y Therrien, R. 2012a. Pumping dry: an increasing groundwater budget deficit induced by urbanization, industrialization, and climate change in an over-exploited volcanic aquifer. Environmental Earth Sciences Journal, 66, 7, 1753-1767. https://doi.org/10.1007/s12665-011-1398-9

Calderhead, A., Therrien, R., Rivera, A., Martel, R. y Gárfias, J. 2011. Simulating pumping-induced regional land subsidence in a complex aquifer system. Advances in Water Resources, 34(1), pp. 83-97. https://doi.org/10.1016/j.advwatres.2010.09.017

Civita, M. 1994. Le carte della vulnerabilita' degli acquiferi all'inquinamento. Teoria & practica (Aquifer vulnerability maps to pollution) (in Italian). Pitagora Ed, Bologna, 325 p.

CONAGUA. 2014. Atlas del Agua en México. Secretaría del Medio Ambiente y Recursos Naturales, 142 p.

Don, Y., Xu, H. y Guomin, L. 2013. Wellhead protection area delineation using multiple methods: a case study in Beijing. Environmental Earth Sciences, 70, 481-488. https://doi.org/10.1007/s12665-013-2411-2

Expósito, J.L., Esteller, M.V., Paredes, J., Rico, C. y Franco, R. 2010. Groundwater Protection Using Vulnerability Maps and Wellhead Protection Area (WHPA): A Case Study in Mexico. Water Resources Management, 2010, 24, 15, 4219-4236. https://doi.org/10.1007/s11269-010-9654-4

Ferrari, L., Orozco-Esquivel, T., Manea, V. y Manea, M. 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, Vol. 522-523, pp. 122-149. https://doi.org/10.1016/j.tecto.2011.09.018

Foster, S. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Vulnerability of soil and groundwater to pollutants. En: Van Duijvenbooden, W. and Van Waegenigh H.G. (ed). TNO Committee on Hydrological Research Information # 38, The Hague, 69-86.

Frind, E.O., Molson, J.W. y Rudolph, D.L. 2006. Well vulnerability: a quantitative approach for source water protection. Ground Water 44:732-742. https://doi.org/10.1111/j.1745-6584.2006.00230.x

Frind, E.O., Muhammad, D.S. y Molson, J.W. 2002. Delineation of threedimensional well capture zones for complex multi-aquifer systems. Ground Water 40(6):586-598. https://doi.org/10.1111/j.1745-6584.2002.tb02545.x

García-Palomo, A., Macías, J.L. y Garduño, V.H. 2000. Miocene to Recent structural evolution of the Nevado de Toluca Volcano region, central Mexico. Tectonophysics, Special Volume, Post-Laramide magmatism and tectonics in Mexico plate interaction, 318, 281-302. https://doi.org/10.1016/S0040-1951(99)00316-9

García-Palomo, A., Macías, J.L., Arce, J.L., Capra, L., Garduño, V.H. y Espíndola, J.M. 2002. Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico. Bolulder, Colorado, Geological Society of America Map and Chart Series MCH089, 26 p.

García-Palomo, A., Zamorano, J.J., López-Miguel, C., Galván-García, A., Carlos-Valerio, V., Ortega, R. y Macías, J.L. 2008. El arreglo morfoestructural de la Sierra de las Cruces, México central. Revista Mexicana de Ciencias Geológicas, 25 (1), 158-178.

Gárfias, J., Llanos, H. y L. Bibiano, L. 2008a. Uso Racional y Sostenible de los recursos hídricos del acuífero del valle de Toluca. Revista Ciencia Ergo Sum, 15-1, 61-72.

Gárfias, J., Expósito, J.L. y Llanos, H. 2008b. Delimitación de las zonas de protección mediante métodos analíticos y un modelo numérico de agua subterránea, Acuífero Margarita, Cuba. Boletín Geológico y Minero, 119 (1), 7-20.

Hamza, S.M., Ahsan, A., Imteaz, M.A., Rahman, A., Mohammad, T.A. y Ghazali, A.H. 2015. Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environmental Earth Sciences; 73(4), 3063-3076. https://doi.org/10.1007/s12665-014-3601-2

Hancox, J., Gárfias, J., Aravena, R. y Rudolph, D.L. 2010. Assessing the Vulnerability of over-exploited volcanic aquifer systems using Multiparameter Analysis, Toluca Basin, Mexico. Environmental Earth Sciences; 59(8), 1643-1660. https://doi.org/10.1007/s12665-009-0147-9

IGME. 1976. Mapa de vulnerabilidad a la contaminación de los mantos acuíferos de la España Peninsular, Baleares y Canarias. Primer esquema cualitativo. 2ª ed., mem. explic., mapa esc. 1:1 000 000. Serv. Public. Min. Industria, Madrid.

INEGI. 1983. Carta Edafológica E14-2 escala 1:250 000. Instituto Nacional de Estadística Geografía e Informática. Gobierno Edo. de México, Toluca.

INEGI. 1998. Modelo Digital de Elevación E1402MDE escala 1:250 000. Instituto Nacional de Estadística Geografía e Informática. Gobierno Edo. de México, Toluca.

Rudolph, D.L., R. Sultan, R., Gárfias, J. y McLaren, R.G. 2006. Significance of Enhanced Infiltration due to Groundwater Extraction on the Disappearance of a Large Wetland System: Toluca Basin, Mexico. Hydrogeology Journal, 14 (1-2), 115-130. https://doi.org/10.1007/s10040-005-0463-4

Salas, J. 2012. Determinación espacial de la recarga mediante el diseño e instalación de instrumentación en pozos de monitoreo y simulación de la infiltración en la zona vadosa. Centro Interamericano de Recursos del Agua (CIRA), Universidad Autónoma del Estado de México, Toluca, México, 186 p.

Schlumberger Water Services, 2010. Visual MODFLOW, Modular three-dimensional finite-difference groundwater flow model, version 2010.1. Schlumberger Water Services, Waterloo, Ontario, 676 p.

Snyder, D.T., Wilkinson, J.M. y Orzol, L.L. 1998. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark Country, Washington. USGS Water-Supply Paper 2488, 63 pp.

UAEM. 1993. Problemática Ambiental de los Recursos Hídricos en la Cuenca Alta del Río Lerma. Seminario Ambiental sobre el Ambiente, 1, 170-181.

UNITECNIA 1997. Actualización de Mediciones Piezométricas de los acuíferos Reactivados en los valles de Toluca y Atlacomulco-Ixtlahuca, en el Estado de México. México, DF.: Unitecnia, 26 p.

Van Stempvoort, D., Evert, L. y Wassenaar, L. 1993. Aquifer vulnerability index: a GIS compatible method for groundwater vulnerability mapping. Can. Wat. Res. Jour., 18, 25-37. https://doi.org/10.4296/cwrj1801025

Vrána, M. 1984. Methodology for construction of groundwater protection maps. En: Kozlovsky E.A. (ed). Hydrogeological Principles of Groundwater Protection, Moscow, Unesco/Unep, 1, 147-149.

Martín del Campo, M.A., Esteller, M.V., Exposito, J.L. y Hirata, R. 2014. Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environmental Monitoring and Assessment, 186(5), 2979-2999. https://doi.org/10.1007/s10661-013-3595-3

Mendoza-Mejía, J.B. y Orozco-Hernández, M.E. 2014. Análisis de la vulnerabilidad biofísica a los riesgos por inundación en la zona metropolitana de Toluca, México. Revista Luna Azul, 38, 86-104. https://doi.org/10.17151/luaz.2014.38.5

Downloads

Published

2017-03-30

How to Cite

Gárfias, J., Llanos, H., Franco, R., & Martel, R. (2017). Vulnerability assessment of the Toluca Valley aquifer combining a parametric approach and advective transport. Boletín Geológico Y Minero, 128(1), 25–42. https://doi.org/10.21701/bolgeomin.128.1.002

Issue

Section

Articles

Funding data