A review of case histories of induced seismicity caused by hydrocarbon production and storage
DOI:
https://doi.org/10.21701/bolgeomin.128.1.014Keywords:
fault, field, hydrocarbon, local magnitude (ML), moment magnitude (Mw)Abstract
In this article we review the stress-strain relationships that take place in the crust during some of the main hydrocarbon production and storage processes: gas extraction; water injection in wells to stimulate the extraction of oil (EOR); unconventional hydrocarbon production by hydraulic fracturing (fracking); disposal of wastewater (saline water) from the extraction of conventional and unconventional hydrocarbons such as saline water return (flowback) of hydraulic fracturing, both with TDS higher than 40 000 mg/L. In addition, the type of faults that are more likely to slip and the induced seismicity related to the production and extraction of hydrocarbons are analysed.
Downloads
References
Acharya, H.R., Henderson, C., Matis, H., Kommepalli, H., Moore, B. and Wang, H. 2011. Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use. United States Department of Energy D.C, 31 pp.
Adushkin, V.V., Rodionov, V.N., Turuntaev, S. and Yudin, A.E 2000. Seismicity in the oilfield. Oilfield Review, 12 (2), 2-17.
Aki, K. 1996. 4. Generation and propagation of G waves from the Niigata earthquake of June 14, 1964. Part 2. Estimation of earthquake moment, released energy and stress-strain drop from G wave spectrum. Bulletin of the Earthquake Research Institute 44, 73-88.
Barat, C. 2011. Proyecto Castor de Almacenamiento Subterráneo de Gas Natural. Tierra y tecnología, 39, 3-8.
Borisovich Turantaiev, S. and Andreevna Razumnaya, O. 2002. An Application of Induced Seismicity Data Analysis for Detection of Spatial Structures and Temporal Regimes of Deformation Processes in Hydrocarbon Fields. Pure and Applied Geophysics, 159, 421-447. https://doi.org/10.1007/PL00001259
Byerlee, J.D. 1978. Friction of rocks. Pure Applied Geophysics, 116, 615-626. https://doi.org/10.1007/978-3-0348-7182-2_4
Cesca, S., Grigoli, F., Heimann, S., González, A., Buforn, E., Maghsoudi, S., Blanch, E. and Dahm, T. 2014a. The seismic sequence related to the gas injection of the Castor Project offshore Spain. Una aproximación multidisciplinar al estudio de las fallas activas, los terremotos y el riesgo sísmico. Segunda Reunión Ibérica Sobre Fallas Activas y Paleosismología, Iberfault, Murcia, España, 217-220.
Cesca, S., Grigoli, F., Heimann, S., González, A., Buforn, E., Maghsoudi, S., Blanch, E. y Dahm, T. 2014b. The 2013 September-October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? Geophysical Journal International, 198, 941-953. https://doi.org/10.1093/gji/ggu172
Charpentier, R. 1995. Nemaha Uplift Province (055). U.S. Geological Survey. Digital Data Series DDS-30, Release 2, one CD-ROM.
Doornhof, D., Kristiansen, T.G., Nagel, N.B., Pattillo, P.D. and Sayers, C. 2006. Oilfield Review, 68 pp.
Eisner, L., Janska, E. and Matousek, P. 2011. Seismic analysis of the events in the vicinity of the Preese Hall well. Seismik report for Cuadrilla Resources, 28 pp.
Fernández, F., Bohoyo, F., Maestro, A. and García-Mayordomo, J. 2014. Nuevas aportaciones sobre las características geométricas del sistema de fallas Amposta Oriental-Montsià Norte (Margen Catalano-Valenciano, España). Una aproximación multidisciplinar al estudio de las fallas activas, los terremotos y el riesgo sísmico. Segunda Reunión Ibérica Sobre Fallas Activas y Paleosismología, Iberfault, Murcia, España, 105-108.
Gay, S.P. 2003. The Nemaha Trend-A system of compressional thrust-fold, strike-slip structural features in Kansas and Oklahoma, (Part 2, conclusion). The Shale Shaker. The Journal of the Oklahoma City Geological Society, 54 (2), 39-49.
Gibbs, J.F., Healy, J.H., Raleihg, C. B., and Coakley, J. (1973). Seismicity in the Rangely, Colorado, Area: 1962-1970. Bulletin of the Seismological Society of America, 63 (5), 1557-1570. https://doi.org/10.1785/BSSA0630051557
Grasso, J. R. (1992). Mechanics of seismic instabilities induced by the recovery of hydrocarbons. Pure and Applied Geophysics, 139 (3-4), 507-534. https://doi.org/10.1007/BF00879949
Green, C. A., Styles, P., and Baptie, B. J. (2012). Preese Hall shale gas fracturing. Review and recommendations for induced seismic mitigation. Department of Energy and Climate Change. GOV. UK, 26 pp.
Hager, B.H., and Nafi Toksöz, M. (2009). Technical review of Bergermeer seismicity study. TNO REPORT 2008-U-R1071/B, 34 pp.
Hillis, R. (2000). Pore pressure/stress coupling and its limitations for seismicity. Exploration Geophysics, 31, 448-454 https://doi.org/10.1071/EG00448
IGME and ENRESA (1998). Mapas Neotectónico y Sismotectónico de España a escala 1:1 000 000. Vol. I (237 pp.) y Vol. II (167 pp.).
IGME 21/07/14. QAFI: Quaternary Active Faults Database of Iberia. http://info.igme.es/qafi/
IGN. 21/07/14. http://www.ign.es/ign/layoutIn/sismoFormularioCatalogo.do.
Kraaijpoel, D., Goutbeek, F., Sleeman, R., and Dost B. (2009). Induced seismicity in the gas reservoirs of the Netherlands. Poster: EGU General Assembly 2009, April 20-24, 2009, Vienna.
Keranen, K. M., Savage, H.M., Abers, G. A., and Cochran. E. S. (2013). Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. The Geological Society of America, 41 (6), 699-702. https://doi.org/10.1130/G34045.1
Larsen, A. (2007). Gas in overburden on Ekofisk. Department of Petroleum technology Institute of Technology and Science University of Stavanger, 89 pp.
Leonard Geophysical Observatory. Oklahoma Geological Survey. 29/06/15. http://www.okgeosurvey1.gov/pages/earthquakes/faq.php.
Maury, V.M.R., Grasso, J.R., and Wittlinger, G. (1991). Monitoring of subsidence and induced seismicity in the Lacq Gas Field (France): the consequences on gas production and field operation. Engineering Geology, 32, 123-135. https://doi.org/10.1016/0013-7952(92)90041-V
McCue K.F., Musson, R.M.W., and Gibson G. (2007), A comparison of the seismicity of the UK and southeastern Australia, in AEES2007, The Australian Earthquake Engineering Society Conference, Wollongong NSW, 23 - 25 November 2007.
McGarr, A. and Simpson, A. 2002. 40 Case histories of induced and triggered seismicity. International Handbook of Earthquake and Engineering seismology. Volume 81A, 647-661. https://doi.org/10.1016/S0074-6142(02)80243-1
Muggeridge, A., Cockin, A., Webb, K., Frampton, H., Collins, I., Moulds, T. and Salino, P. 2014. Recovery rates, enhanced oil recovery and technological limits. Philosophical Transactions of The Royal Society A-Mathematical Physical and Engineering Sciences, 372, 20120320. https://doi.org/10.1098/rsta.2012.0320
Mulders, F.M.M. 2003. Modelling of stress development and fault slip in and around a producing gas reservoir. PhD thesis, Delft University Press, 272 pp.
Murray, K.E. and Holland, A. 2014. Structural Analysis of the Boktukola Syncline, Central Ouachita Mountains, Oklahoma; Inventory of Class II Underground Injection Control Volumes in the Mid-Continent. The Shale Shaker. The Journal of the Oklahoma City Geological Society, 65 (2), 98-106.
Natch, P. K., Oliviera, M., Roch, D.M. and Costa, A.M. 2010. Investigation of geological fault reactivation and opening. Mecanica Computacional, XXIX, 8687-8697.
Nicholson, C. and Wesson, R. L. 1951. Earthquake Hazard Associated with Deep Well Injection-A report to de U.S Environmental Protection Agency (EPA). U.S Geological Survey Bulletin, 74 pp.
Odonne, F., Menard, I., Massonat, G. and Rolando, J. P. 1999. Abnormal reverse faulting above a depleting reservoir. Geology, 27, 111-114. https://doi.org/10.1130/0091-7613(1999)027<0111:ARFAAD>2.3.CO;2
Ottemöller, L., Nielsen, H.H., Atakan, K., Braunmiller, J. and Havskov, J. 2005. The 7 May 2001 induced seismic event in the Ekofisk oil field, North Sea. Journal of Geophysical Research, 110, B10301. https://doi.org/10.1029/2004JB003374
Pater, C.J. and Baisch, S. 2011. Geomechanical study of Bowland shale seismicity. Synthesis report. Cuadrilla Resources Ltd, 57 pp.
Raleigh, C. B., Healy, J. H. and Bredehoeft, J. D. 1976. An experiment in earthquake control at Rangely, Colorado. Science, 191, 1230-1237. https://doi.org/10.1126/science.191.4233.1230
Rothé, J.P. 1977. Séismes artificiels et exploitations pétrolières l'exemple de Lacq (France). Tectonophysics, 9, 215-218. https://doi.org/10.1016/0040-1951(70)90018-1
Segall, P., 1989, Earthquakes triggered by fluid extraction: Geology, 17: 942-946. https://doi.org/10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2
Segall, P., Grasso, J.R. and Mossop, A. 1994. Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. Journal of Geophysical Research, 99 (B8), 15423-15438. https://doi.org/10.1029/94JB00989
Streit, J.E. and Hillis, R.R. 2004. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 29, 1445-1456. https://doi.org/10.1016/j.energy.2004.03.078
Sumy, D. F., Cochran, E.S., Keranen, K.M., Wel, M. and Abers, G.A. 2014. Observations of static Coulomb stress triggering of the November 2011 M 5.7 Oklahoma earthquake sequence. Journal of Geophysical Research: Solid Earth, 119 (3), 1904-1923. https://doi.org/10.1002/2013JB010612
Teufel, L.W. 1996. Influence of Pore Pressure and Production-Induced Changes in Pore Pressure on In Situ Stress. Sandia National Laboratories, 54 pp. https://doi.org/10.2172/208315
TNO (Dutch Organization for Applied Scientific Research). 2008. Technical Review of Bergermeer Seismicity Study. TNO Report, 2008- UR1071/B, 95 pp.
Van Eijs, R.M.H.E., Mulders, F.M.M., Nepveu, M., Kenter, C.J. and Scheffers, B.C. 2006. Correlation between hydrocarbon reservoir properties and induced seismicity in the Netherlands. Engineering Geology, 84, 99-111. https://doi.org/10.1016/j.enggeo.2006.01.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.