The elemental sulfur ore deposit of Salmerón: Las Minas de Hellín basin (Late Miocene, SE Spain)

Authors

  • Javier García-Veigas Universitat de Barcelona
  • Domingo Gimeno Universitat de Barcelona
  • Victoriano Pineda Universitat de Barcelona
  • Dionisio I. Cendón Australian Nuclear Science and Technology Organization
  • Mónica Sánchez-Román Vrije Universiteit Amsterdam
  • David Artiaga Universitat de Barcelona
  • Gemma Bembibre Universitat de Barcelona

DOI:

https://doi.org/10.21701/bolgeomin/133.2/006

Keywords:

Betic Range, Early diagenesis, Elemental sulfur, Evaporites, Miocene

Abstract


Strata-bound elemental sulfur deposits occur in different circum-Mediterranean Miocene sedimentary successions containing evaporites and high amounts of organic matter. It is widely known that bacterial sulfate reduction processes are the triggering mechanisms involved in the origin of hydrogen sulfide and the subsequent native sulfur. However, in most of these sedimentary successions, there is controversy over whether elemental sulfur formed in the basin floor, as the same time as the sediments (biosyngenetic), or later, during diagenesis (bioepigenetic). Las Minas de Hellín basin, in the SE Spain, contains one of the largest elemental sulfur deposits in Europe. Based on data recovered from mining company (1903 -1960) and a borehole campaign performed by MINERSA between 1987 and 1988, two native sulfur ore bodies are recognized. The upper sulfur body is hosted by carbonates and diatom-rich levels, whereas the lower sulfur body, only exploited in underground mines now closed, is hosted by gypsum. This work shows a petrological and geochemical study of core samples from the upper sulfur body in the Salmerón area (Murcia), 500 m west of the widely exploited area of Las Minas de Hellín (Albacete). In Salmerón, elemental sulfur occurs as pseudomorphs after primary sedimentary gypsum as well as filling fractures and bed joints. The elemental sulfur replacement is also related to calcification and silicification of the sedimentary biomediated dolomite. The mineralization is considered bioepigenetic formed during early diagenesis. Contribution from hydrothermal waters circulating through adjacent faults are not ruled out.

Downloads

Download data is not yet available.

References

Anadón, P., Rosell, L., and Talbot, M. R. (1992). Carbonate replacement of lacustrine gypsum deposits in two Neogene continental basins, eastern Spain. Sedimentary Geology, 78, 201-216. https://doi.org/10.1016/0037-0738(92)90020-R

Barker, J., Cochran, D., and Semrad, R. (1979). Economic geology of the Mishraq native sulfur deposit, northern Iraq. Economic Geology, 74, 484-495. https://doi.org/10.2113/gsecongeo.74.2.484

Barker, P., Fontes, J. C., Gasse, F., and Druart, J. C. (1994). Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnology and Oceanography, 39, 99-110. https://doi.org/10.4319/lo.1994.39.1.0099

Baas Becking, L. (1925). Studies on the sulphur bacteria. Annals of Botany, 39, 613-650. https://doi.org/10.1093/oxfordjournals.aob.a089968

Bellanca, A., Calvo, J. P., Censi, P., Elízaga, E., and Neri, R. (1989). Evolution of diatomite-carbonate lacustrine cycles of Miocene age, Southeastern Spain: petrology and isotope geochemistry. Journal of Sedimentary Petrology, 59, 45-52. https://doi.org/10.1306/212F8F12-2B24-11D7-8648000102C1865D

Bellon, H., Bizon, G., Calvo, J. P., Elízaga, E., Gaudant, J., and López, N. (1980). Le volcán du Cerro Monagrillo (Province of Murcia): age radiométrique et corrélations avec les sédiments néogènes du bassin de Hellín (Espagne). Comtes Rendus de l'Académie des Sciences, Série 2, Mécanique Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, 292, 1035-1038.

Berner, R. A. (1980). Early Diagenesis. In: D. H. Holland (ed.), A theoretical approach. Priceton University Press, 241 pp. https://doi.org/10.1515/9780691209401

Bidle, K. D., and Azam, F. (1999). Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 397, 508-512. https://doi.org/10.1038/17351

Bidle, K. D., Maganelli, M., and Azam, F. (2002). Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science, 298, 1980-1984. https://doi.org/10.1126/science.1076076

Böttcher, M. E., and Parafiniuk, J. (1998). Methane-derived carbonates in native sulfur deposits: stable isotope and trace element discrimination related to the transformation of aragonite to calcite. Isotopes in Environmental and Health Studies, 34, 177-190. https://doi.org/10.1080/10256019708036345

Brookins, D. G. (1988). Eh-pH diagrams for geochemistry. Springer-Verlag, Berlin, 190 pp. https://doi.org/10.1007/978-3-642-73093-1

Calvo, J. P., Elízaga, E., López, N., Robles, F., and Usera, J. (1978). El Mioceno superior continental del Prebético externo, evolución del estrecho orbético. Boletín Geológico y Minero de España, 5, 9-21.

Calvo, J. P., and Elízaga, E. (1994). The Cenajo and Las Minas basins (Miocene), southeastern Spain. In: Kelts Gierlowski-Kordesch (eds), Global geological record of lake basins 1. Cambridge Univ. Press, 319-324.

Calvo, J. P., Gómez-Gras, D., Alonso-Zarza, A. M., and Jimenez, S. (2000). Architecture of a benchtype carbonate lake margin and its relation to fluvially dominated deltas, Las Minas basin, Upper Miocene, Spain. Journal of Sedimentary Research, 70, 240-254. https://doi.org/10.1306/2DC4090E-0E47-11D7-8643000102C1865D

Calvo, J. P., Rodríguez-Pascua, M. A., and Gómez-Gras, D. (2014). Rasgos sedimentarios indicadores de inestabilidad causada por actividad tectónica sismogénica. Las cuencas neógeneas de las Minas de Hellín y Cenajo (Prebético Externo, SE de España). Revista de la Sociedad Geológica de España, 27, 205-221.

Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., and Zak, I. (1980). The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199-260. https://doi.org/10.1016/0009-2541(80)90047-9

Davis, J. B., and Kirkland, D. W. (1979). Bioepigenetic sulfur deposits. Economic Geology, 74, 462-468. https://doi.org/10.2113/gsecongeo.74.2.462

Dessau, G., Jensen, M. L., and Nakai, N. (1962). Geology and isotopic studies of Sicilian sulfur deposits. Economic Geology, 57, 410-438. https://doi.org/10.2113/gsecongeo.57.3.410

Elízaga, E. (1994). Análisis de facies sedimentarias y petrología de los depósitos lacustres de edad Neógeno Superior de la zona prebética, Albacete, España. Instituto de Estudios Albacetenses (1º etapa), 74, 216 pp.

Elízaga, E., Calvo, J. P. (1988). Evolución sedimentaria de las cuencas lacustres neógenas de la zona prebética (Albacete, España). Relación, posición y efectos del vulcanismo durante la evolución. Interés minero. Boletín Geológico y Minero de España, 69, 837-846.

Foucault, A., Calvo, J. P., Elízaga, E., Rouchy, J. M., and Servant-Vildary, S. (1987). Place des dèpots lacustres d'age miocène supérieur de la region de Hellin (Province de Albacete, Espagne) dans l'évolution géodinamique des Cordillères bétiques. Comptes Rendus de l'Académie des Sciences Paris, 305-II, 1163-1167.

Francois, R. (1986). A study of Sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochimica et Cosmochimica Acta, 51, 17-27. https://doi.org/10.1016/0016-7037(87)90003-2

Gasiewicz, A. (2000). Comparative study of major element geochemistry of gypsum-gosht limestones and selenite lithofacies from the Miocene of northern Carpathian Foredeep: implications to the model of massive replacement of solid sulphates by calcium carbonates. Chemical Geology, 164, 183-218. https://doi.org/10.1016/S0009-2541(99)00146-1

Gimeno, D. (1994). Estudio de las materias primas minerales contenidas en los materiales miocénicos lacustres de la provincia de Albacete. Revista de Estudios Albacetenses (2ª etapa), 34, 102 pp.

Hodell, D., Anselmetti, F., Brenner, M., Ariztegui, D., and PISDP Scientific Party (2006). The lake Petén Itzá, Scientific Drilling Project. Scientific Drilling, 3, 25-29. https://doi.org/10.5194/sd-3-25-2006

Ivanov, M. V. (1968). Microbial processes in the formation of sulfur deposits. Israel Program for Scientific Translations, IPST Cat. Nº 1850, U.S: Dept. Commerce, 298pp. (English translation from Russian).

Jassin, S. Z., Raiswell, R., and Botrell, S. H. (1999). Genesis of the Middle Miocene stratabound sulphur of Northern Iraq. Journal of Geological Society, London, 156, 25-39. https://doi.org/10.1144/gsjgs.156.1.0025

Jørgensen, B. B. (1977). The sulfur cycle of a coastal marine sediment (Limfjorden, Denmarck). Limnology and Oceanography, 22, 814-832. https://doi.org/10.4319/lo.1977.22.5.0814

Kaplan, I. R., Emery, K. O., and Rittenberg, S. C. (1963). The distribution and isotopic abundance of sulphur in recent marine sediments of southern California. Geochimica et Cosmochimica Acta, 27, 297-331. https://doi.org/10.1016/0016-7037(63)90074-7

Labrado, A. L., Brunner, B., Bernasconi, S. M., and Peckmann, J. (2019). Formation of large native sulfur deposits does not require molecular oxygen. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00024

Lewin, J. C. (1961). The dissolution of silica from diatom walls. Geochimica et Cosmochimica Acta, 21, 182-198. https://doi.org/10.1016/S0016-7037(61)80054-9

Lindtke, J., Ziegenbalg, S. B., Brunner, B., Rouchy, J. M., Pierre C., and Peckmann, J. (2011). Authigenesis of native sulphur and dolomite in a lacustrine evaporitic setting (Hellín basin, Late Miocene, SE Spain). Geological Magazine, 148, 655-669. https://doi.org/10.1017/S0016756811000124

Machel, H. G. (2001). Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insights. Sedimentary Geology, 140, 143-175. https://doi.org/10.1016/S0037-0738(00)00176-7

Margalef, R. (1955). Observaciones paleoecológicas y geocronológicas sobre los sedimentos lacustres miocénicos de Hellín (Albacete). Memorias y comunicaciones, Instituto Geológico de Barcelona, 10, 53-72.

Martín, J. M., Puga-Bernabéu, A., Aguirre J., and Braga, C. (2014). Miocene Atlantic-Mediterranean seaways in the Betic Cordillera (Southern Spain). Revista de la Sociedad Geológica de España, 27, 175-186.

Martín-Velázquez, S., de Vicente, G., Rodríguez-Pascua, M. A., and Calvo, J. P. (1998). Análisis dinámico del sistema de desgarres NO-SE del Prebético de Albacete. Revista de la Sociedad Geológica de España, 11, 369-383.

Meseguer, J. (1924). Estudio de los yacimientos de azufre de las provinicias de Murcia y Albacete. Boletín del Instituto Geológico y Minero de España, 45, 133-214.

Nobel, F. A., Ansriessen, P. A. M., Hebeda, P. H., Priem, H. N. A., and Rondeel, E. H. (1981). Isotopic datting of the postalpine Neogene volcanism in the Betic cordilleras, Southern Spain. Geologie en Mijnbouw, 60, 209-214.

Nrigu, J. O. (1968). Sulfur metabolism and sedimentary environment: Lake Mendota, Wisconsin. Limnology and Oceanography, 13, 430-439. https://doi.org/10.4319/lo.1968.13.3.0430

Ortí, F., Rosell, L., and Anadón, P. (2010). Diagenetic gypsum related to sulfur deposits in evaporites (Libros Gypsum, Miocene, NE Spain). Sedimentary Geology, 228, 304-318. https://doi.org/10.1016/j.sedgeo.2010.05.005

Ortí, F., Pérez-López, A., García-Veigas, J., Rosell, L., Cendón, D. I., Pérez-Valera, F. (2014a). Sulfate isotope compositions (δ 34 S, δ 18 O) and strontium isotopic ratios ( 87 Sr/ 86 Sr) of Triassic evaporites in the Betic Cordillera (SE Spain). Revista de la Sociedad Geológica de España, 27, 79-89.

Ortí, F., Rosell, L., Gibert, L., Moragas, M., Playà, E., Ingles, M., Rouchy, J. M., Calvo, J. P., and Gimeno, D. (2014b). Evaporite sedimentation in a tectonic active basin: The lacustrine Las Minas Gypsum unit (Late Tortonian, SE Spain). Sedimentary Geology, 311, 17-42. https://doi.org/10.1016/j.sedgeo.2014.06.004

Parafiniuk, J. (1989). Oxidation of native sulfur in the Fore-Carpathian sulfur deposits in the light of isotopic and mineralogical data. Acta Geologica Polonica, 39, 113-122.

Passier, H., Middelburg, J. J., De Lange, G. J., and Böttcher, M. E. (1999). Modes of sapropel formation in the eastern Mediterranean: some constraints based on pyrite properties. Marine Geology, 153, 199-219. https://doi.org/10.1016/S0025-3227(98)00081-4

Pawlowski, S., Pawlowska, K., and Kubica, B. (1979). Geology and genesis of Polish sulfur deposits. Economic Geology, 74, 475-483. https://doi.org/10.2113/gsecongeo.74.2.475

Paytan, A., Kastner, M., Campbell, D., and Thiemens, M. H. (1998). Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282, 1459-1462. https://doi.org/10.1126/science.282.5393.1459

Peckmann, J., Paul, J., and Thiel, V. (1999). Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany). Sedimentary Geology, 126, 205-222. https://doi.org/10.1016/S0037-0738(99)00041-X

Permanyer, A., Jorge, R. Baudino, R., and Gibert, L. (2016). Organic-rich shales from internal Betic basins (SE Spain): potential source rocks for the pre-Messinian Salt play in the western Mediterranean. Geologica Acta, 14, 443-460.

Phillip, G., Wali, A. M. A., and Aref, M. A. M. (1994). On the origin of native sulfur deposits in Gebel el Zeit, Gulf of Suez, Egypt. Carbonates and Evaporites, 9, 223-232. https://doi.org/10.1007/BF03175232

Pierre, C., and Rouchy, J. M. (1988). Carbonate replacements after sulfate evaporites in the middle Miocene of Egypt. Journal of Sedimentary Petrology, 58, 446-456. https://doi.org/10.1306/212F8DB9-2B24-11D7-8648000102C1865D

Pineda, V., Gibert, L., Soria, J. M., Carrazana, A., Ibáñez-Insa, J., and Sánchez-Román, M. (2021). Interevaporitic deposits of Las Minas Gypsum Unit: a record of Late Tortonian marine incursions and dolomite precipitation in Las Minas Basin (eastern Betic Cordillera, SE Spain). Paleogeography, Palaeoclimatology, Palaeoecology, 564, 110171. https://doi.org/10.1016/j.palaeo.2020.110171

Playà. E., Ortí, F., and Rosell, L. (2000). Marine to non-marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: sedimentological and geochemical evidence. Sedimentary Geology, 133, 135-166. https://doi.org/10.1016/S0037-0738(00)00033-6

Pozo, M., Calvo, J. P., Scopelliti, G., and González-Acebrón, L. (2016). Seepage carbonate mounds in Cenozoic sedimentary sequences from the Las Minas Basin, SE Spain. Sedimentary Geology, 334, 1-20. https://doi.org/10.1016/j.sedgeo.2016.01.008

Rodríguez-Pascua, M. A., de Vicente, G., and Calvo, J. P. (2001). Paleoseismological analysis of late Miocene lacustrine sediments in the Prebetic Zone, SE Spain. Acta Geológica Hispánica, 36, 213-232.

Rodríguez-Pascua, M. A., de Vicente, G., Calvo, J. P., and Pérez-López, R. (2003). Similarities between recent seismic activity and paleoseismites during the late Miocene in the external Betic Chain (Spain): relationship by 'b' value and the fractal dimension. Journal of Structural Geology, 25, 749-763. https://doi.org/10.1016/S0191-8141(02)00078-0

Rouchy, J. M., Taberner, C., Blanc-Valleron, M. M., Sprovieri, R., Rusell, M., Pierre, C., Di Stefano, E., Pueyo, J. J., Caruso, A., Dinares-Turell, E., Gomis-Coll, E., Wolff, G. A., Cespuglio, G., Ditchfield, P., Pestrea, S., Combourieu-Nebout, N., Santisteban, C., and Grimalt, J. O. (1998). Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca Basin (SE Spain) during the Messinian. Sedimentary Geology, 121, 23-55. https://doi.org/10.1016/S0037-0738(98)00071-2

Ruckmick, J. C., Wimberly, B. H., and Edwards, A. F. (1979). Classification and genesis of biogenic sulfur deposits. Economic Geology, 74, 469-474. https://doi.org/10.2113/gsecongeo.74.2.469

Sánchez-Román, M., McKenzie, J. A., Rebello Wagener, A., Rivadeneyra, M. A., and Vasconcelos, C. (2009). Presence of sulfate does not inhibit low-temperature dolomite precipitation. Earth and Planetary Science Letters, 285, 131-139. https://doi.org/10.1016/j.epsl.2009.06.003

Sánchez-Román, M., Romanek, Ch. S., Fernández-Remolar, D. C., Sánchez-Navas, A., McKenzie, J. A., Amils Pibernat, R., and Vasconcelos, C. (2011). Aerobic biomineralization of Mg-rich carbonates: implications for natural environments. Chemical Geology, 281, 143-150. https://doi.org/10.1016/j.chemgeo.2010.11.020

Sanz de Galdeano, C., and Vera, J. A. (1992). Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Research, 4, 21-36. https://doi.org/10.1111/j.1365-2117.1992.tb00040.x

Servant-Vildary, S., Rouchy, J. M., Pierre, C., and Foucault, A. (1990). Marine and continental water contributions to a hypersaline basin using diatom ecology, sedimentology, and stable isotopes: an example in the Late Miocene of Mediterranean (Hellín basin, southern Spain). Palaeogeography, Palaeoclimatology, Palaeocology, 79, 189-204. https://doi.org/10.1016/0031-0182(90)90017-2

Tekin, E. (2006). Elemental sulfur of bacterial origin in the lacustrine evaporites of the Polatli-Sivrihisar Neogene basin (Central Anatolia, Turkey). Carbonates and Evaporites, 21, 33-39. https://doi.org/10.1007/BF03175466

Troelsen, H., and Jørgensen, B. B. (1981). Seasonal dynamics of elemental sulfur in two coastal sediments. Estuarine, Coastal and Shelf Science, 15, 255-266. https://doi.org/10.1016/0272-7714(82)90062-2

van Lith Y., Vasconcelos, C., Warthmann, R., Martins, J., and McKenzie, J. (2002). Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia, 485, 35-49. https://doi.org/10.1023/A:1021323425591

Vasconcelos, C., and McKenzie, J. A. (1997). Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal Sedimentary Research, 67, 378-390. https://doi.org/10.1306/D4268577-2B26-11D7-8648000102C1865D

Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J. A., and Karpoff, A. M. (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091-1094. https://doi.org/10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2

Wijsman, J. W. N., Middelburg, J. J., Herman, P. M. J., Böttcher, M., and Heip, C. H. R. (2001). Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Marine Chemistry, 74, 261-278. https://doi.org/10.1016/S0304-4203(01)00019-6

Ziegenbalg, S. B., Brunner, B., Rouchy, J. M., Birgel, D., Pierre, C., Böttcher, M. E., Caruso, A., Immenhauser, A., and Peckmann, J. (2010). Formation of secondary carbonates and native sulphur in sulphate-rich Messinian strata, Sicily. Sedimentary Geology, 227, 37-50. https://doi.org/10.1016/j.sedgeo.2010.03.007

Downloads

Published

2022-06-30

How to Cite

García-Veigas, J., Gimeno, D., Pineda, V., Cendón, D. I., Sánchez-Román, M., Artiaga, D., & Bembibre, G. (2022). The elemental sulfur ore deposit of Salmerón: Las Minas de Hellín basin (Late Miocene, SE Spain). Boletín Geológico Y Minero, 133(2), 135–161. https://doi.org/10.21701/bolgeomin/133.2/006

Issue

Section

Articles

Funding data

Ministerio de Ciencia e Innovación
Grant numbers CGL-2016-79458

Ministerio de Ciencia, Innovación y Universidades
Grant numbers PID2020-118999GB-I00

Generalitat de Catalunya
Grant numbers 21-SGR-829