Environmental impact on the natural resources of an area affected by mining activity in Bolivia: a geochemical evaluation of soils and sediments

Authors

  • José A. Acosta Grupo de investigación “Gestión, Aprovechamiento y Recuperación de Suelos y Aguas (GARSA)”, Universidad Politécnica de Cartagena
  • Mª Ángeles Muñoz Grupo de investigación “Gestión, Aprovechamiento y Recuperación de Suelos y Aguas (GARSA)”, Universidad Politécnica de Cartagena
  • María Gabarrón Grupo de investigación “Gestión, Aprovechamiento y Recuperación de Suelos y Aguas (GARSA)”, Universidad Politécnica de Cartagena
  • Silvia Martínez-Martínez Grupo de investigación “Gestión, Aprovechamiento y Recuperación de Suelos y Aguas (GARSA)”, Universidad Politécnica de Cartagena

DOI:

https://doi.org/10.21701/bolgeomin.132.4.001

Keywords:

metalloids, metals, amalgamation, mercury, gold mining

Abstract


The current methods used in Bolivia to extract gold using the amalgamation process with mercury result in environmental contamination and a risk to human health. The objective of this study was to determine Hg, As, Cu, Cd, Pb and Zn concentrations in soils and sediments from three mining districts. Results showed As and Hg concentrations were higher in the topsoil than in the sub-surface soils in the Sunchullí-Viscachani area, indicating active As/Hg atmospheric deposition, where concentrations exceeded the threshold levels. In addition, concentrations of Cd and Zn largely exceeded the threshold levels in the Katantica and Sural mining districts. In addition, the Sunchullí and Viscachani lagoon sediments were contaminated by Hg, As, Cd, Zn and Cu, whilst Katantica lagoon showed high concentrations of Zn, Cd and Hg, and high levels of As, Zn and Cu were reported in the Sural lagoon. Our results showed that the Cu, Pb, As and Hg concentrations in sediments in the Sunchullí river; As, Hg and Cu in the Pelechuco river, and As and Hg in the Rayo Rojo river all come from direct mine discharges into the rivers. These high concentrations of metals and metalloids must cause an impact on the aquatic ecosystems and human health. Therefore, there is a need to study the availability and speciation of metals and metalloids in soils and sediments to better understand the cycling of these elements and their transfer to the food chain.

Downloads

Download data is not yet available.

References

Acosta J.A., MartínezMartínez S. Faz A. Millán R. Muñoz M.A. Terán T. Vera R. 2011. Characterization of the potential Mercury contamination in the apolobamba Gold Mining area, Bolivia. Spanish journal of soil science, 1, 86-99. https://doi.org/10.3232/SJSS.2011.V1.N1.06

Alanoca, L., Maurice-Bourgoin, L. 2000. Estudio de la contaminación por mercurio en la cuenca alta del Río Tuchi. La Paz, Bolivia. La Paz, 234pp.

Anne, P. 1945. Sur le dosage rapide du carbone organique des sols. Annales de Agronomie, 2, 162-172.

Bowman, W.S., Faye, G.H., Sutarno, R., McKeague, J.A., Kodama, H., 1979. Soil Samples SO-1, SO2, SO-3 and SO-4-Certified Reference Materials. CANMET Report 79 3. CANMET Mining and Mineral Sciences Laboratories, Ottawa, ON. https://doi.org/10.4095/307172

Bower, C.A., Wilcox, L.V. 1965. Soluble salts. In: C.A. Black (ed.). Methods on Soil Analysis (933-940 pp). Madison, Wisconsin, U.S.A. American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.c11

BWRHABTGG. 1995. Besluit van de Vlaamse Regering Houdende Achtergrondwaarden. Bodernsaneringsnomen en Toepassingen van Gereinigde Grond. Bruselas. Belgium. Ministry of Environment and Employment, Brussels, 59 pp.

Campo, L. 2003. Componentes Programa Araucaria, resultados cartográficos. Programa Araucaria. 47 pp.

Chapman, H.D. 1965. Methods of Soil Analysis. Cation exchange capacity. In: C. A. Black (ed). (pp 891-900). Madison, Wisconsin, U.S.A. American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.c6

Choong, T.S., Chuah, T.G., Robiah, Y., Gregory, F.L., Azni, I. 2007. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217, 139-166. https://doi.org/10.1016/j.desal.2007.01.015

Cobertera, E. 1993. Edafología aplicada: suelos, producción agraria, planificación territorial e impactos ambientales. Ed Cátedra. Madrid. Spain.

Duchaufour, P. 1970. Precis de Pedologie. Masson. Paris. 481 pp

Enríquez, J.C. 2001. Minería, Minerales y Desarrollo Sustentable en Bolivia. La Paz. Bolivia. Servicios Ambientales.

Ericksen, J.A., Gustin, M.S., Schorran, D.E., (...), Lindberg, S.E., Coleman, J.S. 2003. Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment 37(12), 1613-1622. https://doi.org/10.1016/S1352-2310(03)00008-6

FAO-ISRIC, 2006. Guidelines for Soil Description (revised), fourth ed. F.A.O, Roma. 97pp

Faz, A., Martínez, S., Acosta, J.A., Millán, R., Vera, R., Sierrra, M.J., García, G., Muñoz., M.A. 2003 Estudio sobre contaminación por actividades mineras en Apolobamba, Internal report. Cartagena, Universidad Politécnica de Cartagena-Agencia Española de Cooperación Internacional-Programa Araucaria. 260 pp.

Guan, X., Du, J., Meng, X., Sun, Y., Sun, B., Hu, Q. 2012. Application of titanium dioxide in arsenic removal from water: a review. Journal of Hazardous Materials, 215, 1-16. https://doi.org/10.1016/j.jhazmat.2012.02.069 PMid:22445257

Honorato, R. 2000. Manual de Edafología. Ediciones Universidad Católica de Chile. Santiago, Chile.

Horvat, M., Nolde, N., Fajon,V., Jereb, V., Logar, M., Lojen, S., Jacimovic, R., Falnoga, I., Faganeli, J., Drobne, D. 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment, 304, 231-256. https://doi.org/10.1016/S0048-9697(02)00572-7 PMid:12663187

Kabata-Pendias, A., Pendias, H. 2010. Trace Elements in soils and plants. Fourth edition CRC Press, Boca Raton. https://doi.org/10.1201/b10158

Lechler, P.J., Miller, J.R., Lacerda, L.D., Vinson, D., Bonzongo, J.C., Lyons, W.B., Warwick, J.J. 2000. Elevated mercury concentrations in soils, sediments, water, and fish of the Madeira River basin, Brazilian Amazon: a function of natural enrichments? Science of the Total Environment, 260, 87-96. https://doi.org/10.1016/S0048-9697(00)00543-X PMid:11032118

Lindquist, O., Rhode, H. 1985. Atmospheric Mercury-a review. Tellus, 136-157 https://doi.org/10.3402/tellusb.v37i3.15010

Litter, M.I., Morgada, M.E., Bundschuh, J. 2010. Possible treatments for arsenic removal in Latin American waters for human consumption. Environmental Pollution, 158(5),1105-1118. https://doi.org/10.1016/j.envpol.2010.01.028 PMid:20189697

Loayza, F., Franco, I. 2000. Estudio Ambiental, Socio Cultural y Económico de la Minería y la Comunidad en Bolivia, Perú y Chile. El Caso Boliviano. Centro Internacional de Investigaciones para el Desarrollo, División Minería e Industria - Banco Mundial, La Paz. Bolivia.

M.D.S.M.A. (Ministerio de Desarrollo Sostenible y Medio Ambiente - Bolivia) 1996. Proyecto Piloto Oruro: Documento Plan de Gestión Ambiental. Swedish Geological AB, La Paz.

Malm, O., Pfeiffer, W.C., Souza, C.M.M., Reuther, R. 1990. Mercury pollution due to gold mining in the Madeira river basin. Brazil. AMBIO, 19 (1), 11-15.

Maurice-Bourgoin, L., Quiroga, I. 2001. Total mercury distribution and importance of the biomagnification process in rivers of the Bolivian Amazon. In: The Ecohidrology of South America Rivers and Wetlands (McClain M., Ed.), IAHS Special Publication nº 6, pp 49-66.

Maurice-Bourgoin, L., Quiroga, I., Guyot, J.L., Malm, O. 1999. Mercury pollution in the upper Beni River basin. Bolivia. AMBIO, 28 (4), 302-306.

Mulholland, D.S., Resende, G., Ferreira, D. 2012. Geological and anthropogenic influences on sediment metal composition in the upper Paracatu River Basin, Brazil. Environmental Earth Science 67, 1307-1317. https://doi.org/10.1007/s12665-012-1574-6

N.M.H.P.P.E. 1994. Netherlands Ministry of Housing. Physical Planning and Environment. Leidschendam. Holland.

Peech, M. 1965. Methods or Soil Analisis. Hidrogen-ion activity. (In C.A. Black (ed.). (pp 914-916) American Society of Agronomy. Madison, Wisconsin, U.S.A. https://doi.org/10.2134/agronmonogr9.2.c9

Peñaloza, R. y Reinhardt, J. 2000. Problemas ambientales de la minería Boliviana. Estudio de caso de la minería en el área de la ciudad de Potosí, Proyecto IDRC - WRI - CIPMA: Identificando los Impactos Económicos y Ambientales de la Liberalización del Comercio: Una Aplicación al Sector Minero, Fundación MEDMIN

Pfeiffer. W.C., Maim. O., Souza. C.M.M., Drude. L., Silveira. E.G., Bastos. W.R. 1991. Mercury in the Madeira River ecosystem, Rondonia, Brazil. Ecologycal Management, 38, 239-245. https://doi.org/10.1016/0378-1127(91)90145-L

Podwojewski, P., Poulenard, J., Nguyet, M.L., de Rouw, A., Nguyen, V.T., Pham, Q.H., Tran, D.T. 2011. Climate and vegetation determine soil organic matter status in an alpine inner-tropical saoil catena in the Fan Si Pan Mountain, Vietnam. Catena, 87, 226-239. https://doi.org/10.1016/j.catena.2011.06.002

Risser, J.A., Baker, D.E. 1990. Testing soils for toxic metals. In: R. L. Westerman, pp 275-298 (Ed). Madison, Soil Testing and plant analysis. Soil Sci. Soc. Amer. Spec. Publ. 3. 3rd Ed. https://doi.org/10.2136/sssabookser3.3ed.c11

Soil Survey Division Staff. 1993. Soil Survey Manual. USDA Handbook 18, U.S.Government Printing Office, Washington, DC. 435 pp.

Soil Survey Staff, 2006. Keys to Soil Taxonomy, 10th ed. Natural resources Conservation service (NRCS), Washington DC.

Travnikov, O. 2005. Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere. Atmos. Environ. 39:7541-7548. https://doi.org/10.1016/j.atmosenv.2005.07.066

USDA. 2003. National Soil Survey Handbook. Natural Resources Conservation service title 430-VI. Part 618.47. Reaction (pH): Soil Properties and Qualities.

W.R.B. 2006. World Reference Base for Soil Resources 2006. A framework for international classification, correlation and communication 103. Rome. 128 pp.

Wotruba, H., Hentschel, T., Livan, K., Hruschka F., Priester, M. 1998. Environmental Management in Small-scale Mining. Integrated Management of the environment in Small Mining (MEDMIN) e Swiss Agency for Development and Cooperation (COSUDE), La Paz.

Zang-Ho, S., Ki-Hyun, K., Min-Young, K., Meehye, L. 2005. Modelling study of reactive gaseous mercury in the urban air. Atmospheric Environment, 39, 749-761. https://doi.org/10.1016/j.atmosenv.2004.09.071

Zemmrich, A., Manthey, M., Zerbe, S., Oyunchimeg, D. 2010. Driving environmental factors and the role of grazing in grassland communities: A comparative study along an altitudinal gradient in Western Mongolia. Journal of Arid Environment, 74, 1271-1280. https://doi.org/10.1016/j.jaridenv.2010.05.014

Downloads

Published

2021-12-30

How to Cite

Acosta, J. A., Muñoz, M. Ángeles, Gabarrón, . M., & Martínez-Martínez, S. (2021). Environmental impact on the natural resources of an area affected by mining activity in Bolivia: a geochemical evaluation of soils and sediments. Boletín Geológico Y Minero, 132(4), 363–374. https://doi.org/10.21701/bolgeomin.132.4.001

Issue

Section

Articles