Maximum entropy spectral analysis of uneven time series in the geosciences
DOI:
https://doi.org/10.21701/bolgeomin.131.2.007Keywords:
maximum entropy, autoregressive, missing data, hiatus, permutation testAbstract
Time series with a non-constant sampling interval (i.e., uneven time series) are ubiquitous in the geosciences. This is due to random sampling, gaps in sampling, missing data, hiatuses, or the transformation between a spatial scale and a temporal scale when, for example, the sedimentation rate is not constant. The preferred approach in the spectral analyses of these uneven sequences are interpolation-free spectral methods, and the Lomb-Scargle periodogram is a popular choice. In the work presented here, the maximum entropy spectral estimator, modified to deal with uneven time series, is proposed as an alternative to the periodogram. The appeal of this approach is that the maximum entropy spectral estimator is a high resolution estimator. The proposed methodology uses the equivalence between the maximum entropy and the autoregressive spectral estimator. The permutation test is used to assess the statistical confidence of the estimated power spectrum and real and simulated time series are used to illustrate the performance of the proposed methodology. This study shows that the maximum entropy spectral estimation of uneven time series avoids the side lobe problem that plagues the Lomb-Scargle periodogram whilst maintaining its high resolution for short time series. The maximum spectral estimator works well in cases where large proportions of the data are randomly missing, when there are gaps in the data, where there is one or more significant hiatus in the process that generates the data, and for time series with random sampling.
Downloads
References
Ables, J. G., 1974. Maximum entropy spectral analysis. Astronomy and Astrophysics Supplement, 15, 383-393.
Babu, P. and Stoika, P. 2010. Spectral analysis of nonuniformly sampled data - a review. Digital Signal Processing, 20, 359-378. https://doi.org/10.1016/j.dsp.2009.06.019
Baggeroer, A. B. (1976), Confidence intervals for regression (MEM) spectral estimates, IEEE Transactions on Information Theory, 22(5), 534-545. https://doi.org/10.1109/TIT.1976.1055612
Bos, R., de Waele, S. and Broersen, P.M.T., 2002. Autoregressive spectral estimation by application of Burg algorithm to irregularly sampled data. IEEE Transactions on Instrumentation and Measurement, 51(6), 1289-1294. https://doi.org/10.1109/TIM.2002.808031
Brockwell, P.J., Davis, R.A., 1991. Times Series: Theory and Methods, Second ed. Springer, New York, 577 pp. https://doi.org/10.1007/978-1-4419-0320-4
Broersen, P.M.T., de Waele, S. and Bos, R., 2004a. Autoregressive spectral analysis when observations are missing. Automatica, 40, 1495-1504. https://doi.org/10.1016/j.automatica.2004.04.011
Broersen, P.M.T., de Waele, S. and Bos, R., 2004b. Applications of autoregressive spectral analysis to missing data problems. IEEE Transactions on Instrumentation and Measurement, 53 (4), 981-986. https://doi.org/10.1109/TIM.2004.830597
Burg, J.P., 1967. Maximum entropy spectral analysis. 37th Annual International Meeting of the Society for the Exploration of Geophysics. Oklahoma City, OK, 34-41.
Burg, J.P., 1975. Maximum entropy spectral analysis. PhD Dissertation, Stanford University, 127 pp.
Burshtein, D., and E. Weinstein (1987), Confidence intervals for the maximum entropy spectrum, IEEE Transactions on Acoustic Speech Signal Processing, 35, 504- 510. https://doi.org/10.1109/TASSP.1987.1165156
Chatfield, C., 1991, The analysis of time series (4th ed.). Chapman & Hall, London, 241 pp. Efron, B. and Tibshirani, R. J. 1993. B. An Introduction to the Bootstrap, Chapman and Hall, New York, 1993, 436 pp.
Egozcue, J. J., 1980. Una interpretación del análisis espectral de máxima entropía. Revista de Obras Públicas, 167-172.
Good, P., 2000. Permutation tests. A practical guide to resampling methods for testing hypothesis. Springer, 271 p. https://doi.org/10.1007/978-1-4757-3235-1_3
Gnevyshev, M. N., 1977. Essential features of the 11-year solar cycle. Solar Physics, 51, 175-183. https://doi.org/10.1007/BF00240455
Gnevyshev, M. N. and Ohl, A. I., 1948. On the 22-year cycle of solar activity. Astronomicheskii Zhurnal, 25, 18-20.
Heslop, D. and Dekkers, M.J. 2002, Spectral analysis of unevenly spaced climatic time series using CLEAN: signal recovery and derivation of significance levels using a Monte Carlo simulation. Physics of the Earth and Planetary Interiors, 130, 103-116. https://doi.org/10.1016/S0031-9201(01)00310-7
Larsson, E.G. and Li, J., 2003. Spectral analysis of periodically gapped data. IEEE Transactions on Aerospace and Electronic Systems, 39, 3, 1089-1097. https://doi.org/10.1109/TAES.2003.1238761
Lomb, N.R. 1976. Least squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39, 447-462. https://doi.org/10.1007/BF00648343
Marple, S.L. 1987. Digital spectral analysis with applications. Prentice Hall. Englewood Cliffs, NY, 492 pp.
Papoulis, A., 1984, Probability, random variables and stochastic processes, McGraw-Hill Intern. Editions, Singapore, 576 pp.
Pardo-Igúzquiza, E., Chica-Olmo, M. and Rodríguez-Tovar, F.J. 1994. CYSTRATI: a computer program for spectral analysis of stratigraphic successions. Computers & Geosciences, 20 (4), 511-584. https://doi.org/10.1016/0098-3004(94)90080-9
Pardo-Igúzquiza, E. and Rodríguez-Tovar, F.J. 2000. The permutation test as a non-parametric method for testing the statistical significance of power spectrum estimation in cyclostratigraphic research. Earth and Planetary Science Letters, 181, 175-189. https://doi.org/10.1016/S0012-821X(00)00191-6
Pardo-Igúzquiza, E., Schwarzacher, W. and Rodríguez-Tovar, F.J., 2000. A library of computer programs for assisting teaching and research in cyclostratigraphic analysis. Computers & Geosciences, 26, 723-740. https://doi.org/10.1016/S0098-3004(99)00139-9
Pardo-Igúzquiza, E. and Rodriguez-Tovar, F.J. 2004. POWGRAF2: a computer program for graphical spectral analysis. Computers & Geosciences, 30 (5), 533-542. https://doi.org/10.1016/j.cageo.2004.03.004
Pardo-Igúzquiza, E. and Rodríguez-Tovar, F.J. 2005. MAXENPER: a program for maximum entropy spectral estimation with assessment of statistical significance by the permutation test. Computers & Geosciences, 31 (5), 555-567. https://doi.org/10.1016/j.cageo.2004.11.010
Pardo-Igúzquiza, E. and Rodriguez-Tovar, F. J., 2006. Maximum entropy spectral analysis of climatic time series revisited: Assessing the statistical significance of estimated spectral peaks. Journal of Geophysical Research: Atmospheres, 111, D10202, 1-8. https://doi.org/10.1029/2005JD006293
Pardo-Igúzquiza, E. and Rodríguez-Tovar, F.J. 2012. Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb-Scargle periodogram and Monte Carlo evaluation of statistical significance. Computers & Geosciences, 49, 207-216. https://doi.org/10.1016/j.cageo.2012.06.018
Pardo-Igúzquiza, E. and Rodriguez-Tovar, F.J. 2013. Análisis espectral de series temporales de variables geológicas con muestreo irregular. Boletín Geológico y Minero, 124 (2), 323-337.
Park, J., Lindberg, C.R. and Vernon III, F.L. 1987. Multitaper spectral analysis of high frequency seismograms, Journal of Geophysical Research, 92, 12675-12684. https://doi.org/10.1029/JB092iB12p12675
Percival, D. B., and A. T. Walden (1993), Spectral Analysis for Physical Application. Multitaper and Conventional Univariate Techniques, Cambridge University Press, New York, 583 pp.
Pestiaux, P. and Berger, A. 1984. An optimal approach to the spectral characteristics of deep-sea climatic records. In: Berger A. (ed.), Milankovitch and Climate, Part 1. D. Reidel Publishing Company, Dordrecht, 417-445.
Polyak, V.J. and Asmerom, Y. 2001. Late Holocene Climate and Cultural Changes in the Southwestern United States. Science, 294, 148-151. https://doi.org/10.1126/science.1062771
Press, H. W., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 1992. Numerical recipes in Fortran, (2nd ed.), Cambridge University Press, New York, 963 pp.
Priestley, M. B. (1981). Spectral analysis and time series. London, U.K., Academic Press, 890 pp.
Raymo, M. E., Hodell, D., Jansen, E., 1992. Response of deep ocean circulation to the initiation of Northern Hemisphere glaciation (3-2 myr). Paleoceanograpy, 7, 645-672. https://doi.org/10.1029/92PA01609
Roberts, D.H., Lehár, J. and Dreher, J.W. (1987) Time series analysis with CLEAN; 1: Derivation of a spectrum. Astronomical Journal, 93 (4), 968-989. https://doi.org/10.1086/114383
Scargle, J.D. 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 263, 835-853. https://doi.org/10.1086/160554
Schulz, M. and Mudelsee, M. 2002. REDFIT: estimating red noise spectra directly from unevenly spaced paleoclimatic time series. Computer & Geosciences, 28 (3), 421-426. https://doi.org/10.1016/S0098-3004(01)00044-9
Schulz, M. and Stattegger, K. 1997. SPECTRUM: spectral analysis of unevenly spaced paleoclimatic time series. Computers & Geosciences, 23 (9), 929-945. https://doi.org/10.1016/S0098-3004(97)00087-3
Schwarzacher, W., 1975. Sedimentation Models and Quantitative Stratigraphy. Developments in Sedimentology, Vol. 19. Elsevier, 382 pp.
Schwarzacher, W., 1993. Cyclostratigraphy and the Milankovitch theory. Developments in Sedimentology, Vol. 52. Elsevier, 224 pp.
Stoica, P. and Sandgren, N. 2006. Spectral analysis of irregularly-sampled data: Paralleling the regularly-sampled data approaches. Digital Signal Processing, 16, 712-734. https://doi.org/10.1016/j.dsp.2006.08.012
Ulrych, T.J. and Bishop, T.N., 1975. Maximum entropy spectral analysis and autoregressive decomposition. Review of Geophysics and Space Physics, 13 (1), 183-200. https://doi.org/10.1029/RG013i001p00183
Vecchio, A., Lepreti, F., Laurenza, M., Alberti, T. and Carbone, V., 2017. Connection between solar activity cycles and grand minima generation. Astronomy & Astrophysics, 559, A58, 1-12. https://doi.org/10.1051/0004-6361/201629758
Weedon, G.P. 2003. Times-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles. Cambridge University Press, Cambridge, 259 pp. https://doi.org/10.1017/CBO9780511535482
Weedon, G. P., Page, K. N. and Jenkyns, H. C., 2019. Cyclostratigraphy, stratigaphic gaps and the duration of the Hettagian Stage (Jurassic): insights from the Blue Lias Fomation of southern Britain, Geological Magazine, 156 (9), 1469-1509. https://doi.org/10.1017/S0016756818000808
Zhang, Y., Baggeroer, A.B. and Bellingham, J.G., 2005. The total variance of a periodogram-based spectral estimate of a stochastic process with spectral uncertainty and its application to classifier design. IEEE Transactions on Signal Processing, 53 (12), 4556-4567. https://doi.org/10.1109/TSP.2005.859346
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Ministerio de Ciencia e Innovación
Grant numbers PID2019-106435GB-I00