Uplifted marine terraces by active coastal tectonic deformation along the east of Algiers: implications for African and European plate convergence and sea-level curves

Authors

  • Dinar Haythem Larbi Ben M’hidi University
  • Abdelkader Khiari Larbi Ben M’hidi University
  • Mansouri Zineb Batna 2 University
  • Hassan Taib Larbi Ben M’hidi University
  • Nouali Hana Larbi Ben M’hidi University
  • Boumaza Bilal People’s Friendship University of Russia

DOI:

https://doi.org/10.21701/bolgeomin/134.2/004

Keywords:

Marine terraces, Active coastal tectonic, Plate convergence, Earthquake, Geomorphic markers

Abstract


Marine terraces are geological features composed of elevated, flat surfaces and steep slopes. The evolution of these terraces is largely influenced by active coastal tectonic deformation. This study investigates the uplift of marine terraces along the east coast of Algiers and its implications for the African and European plate convergence and sea-level curves. The objective of studying marine terraces in the Zemmouri area is to gain a deeper understanding of the evolution of the Earth’s coastlines and how they have been shaped over time by natural processes such as sea level changes, tectonic activity, geomorphic parameters, and erosion. Marine terraces provide valuable information about the history of sea level changes and the rate of tectonic uplift or subsidence of the coastal areas. Secondary data sources, including qualitative information and high-resolution satellite imagery (SRTM 30 m and ALOS 12.5 m), were used to analyze the impact of sea level on marine terraces. Fieldwork using GPS and altimeter measurements at the site of the Mw=6.8 Zemmouri earthquake that occurred on May 21, 2003, revealed the presence of two well-preserved marine terraces, which serve as important markers for measuring the longterm fault slip rate. The analysis highlights the significance of active coastal tectonic deformation in shaping the coastlines. This research offers new insights into the ongoing processes of plate convergence and sea level change along the east coast of Algiers, contributing to our overall comprehension of coastal evolution and the potential for seismic hazards in the region.

Downloads

Download data is not yet available.

References

Ambraseys, N. N., and Vogt, J. (1988). Material for the investigation of the seismicity of the region of Algiers. European Earthquake Engineering, 3, 16-29.

Angelier, J., and Chen, R. F. (2002). Soulèvement et plissement tectoniques révélés par analyse mathématique empirique de profils longitudinaux de rivières: un cas à Taiwan. Comptes Rendus Geoscience, 334(15), 1103-1111. https://doi.org/10.1016/S1631-0713(02)01850-3

Anis, Z., Wissem, G., Riheb, H., Biswajeet, P., and Essghaier, G. M. (2019). Effects of clay properties in the landslides genesis in flysch massif: Case study of Aïn Draham, North Western Tunisia. Journal of African Earth Sciences, 151, 146-152. https://doi.org/10.1016/j.jafrearsci.2018.12.005

Authemayou, C., Pedoja, K., Heddar, A., Molliex, S., Boudiaf, A., Ghaleb, B., Lanoe, B. V. V., Delcaillau, B., Djellit, H., Yelles, K., and Nexer, M. (2017). Coastal uplift west of Algiers (Algeria): pre-and post-Messinian sequences of marine terraces and rasas and their associated drainage pattern. International Journal of Earth Sciences, 106(1), 19-41. https://doi.org/10.1007/s00531-016-1292-5

Ayadi, A., Dorbath, C., Ousadou, F., Maouche, S., Chikh, M., Bounif, M. A., and Meghraoui, M. (2008). Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model. Journal of Geophysical Research: Solid Earth, 113(B9). https://doi.org/10.1029/2007JB005257

Belabbès, S., Meghraoui, M., Çakir, Z., and Bouhadad, Y. (2009). InSAR analysis of a blind thrust rupture and related active folding: the 1999 Ain Temouchent earthquake (Mw 5.7, Algeria) case study. Journal of Seismology, 13(4), 421-432. https://doi.org/10.1007/s10950-008-9135-x

Benouar, D. (1994). Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Annals of geophysics, 37(4). https://doi.org/10.4401/ag-4466

Bilbao-Lasa, P., Jara-Muñoz, J., Pedoja, K., Álvarez, I., Aranburu, A., Iriarte, E., and Galparsoro, I. (2020). Submerged Marine Terraces Identification and an Approach for Numerical Modeling the Sequence Formation in the Bay of Biscay (Northeastern Iberian Peninsula). Frontiers in Earth Science, 8, 47. https://doi.org/10.3389/feart.2020.00047

Biolchi, S., Furlani, S., Devoto, S., Gauci, R., Castaldini, D., and Soldati, M. (2016). Geomorphological identification, classification, and spatial distribution of coastal landforms of Malta (Mediterranean Sea). Journal of Maps, 12(1), 87-99. https://doi.org/10.1080/17445647.2014.984001

Bougrine, A., Yelles-Chaouche, A. K., and Calais, E. (2019). Active deformation in Algeria from continuous GPS measurements. Geophysical Journal International, 217(1), 572-588. https://doi.org/10.1093/gji/ggz035

Bounif, A., Bezzeghoud, M., Dorbath, L., Legrand, D., Deschamps, A., Rivera, L., and Benhallou, H. (2003). Seismic source study of the 1989, October 29, Chenoua (Algeria) earthquake from aftershocks, broad-band and strong ground motion records. Annals of Geophysics, 46(4).

Bounif, A., Dorbath, C., Ayadi, A., Meghraoui, M., Beldjoudi, H., Laouami, N., and Maouche, S. (2004). The 21 May 2003 Zemmouri (Algeria) earthquake Mw 6.8: relocation and aftershock sequence analysis. Geophysical Research Letters, 31(19), L19606. https://doi.org/10.1029/2004GL020586

Cerrone, C., Di Donato, V., Mazzoli, S., Robustelli, G., Soligo, M., Tuccimei, P., and Ascione, A. (2021). Development and deformation of marine terraces: Constraints to the evolution of the Campania Plain Quaternary coastal basin (Italy). Geomorphology, 385, 107725. https://doi.org/10.1016/j.geomorph.2021.107725

Chen, W. S., Yang, C. Y., Chen, S. T., and Huang, Y. C. (2020). New insights into Holocene marine terrace development caused by seismic and aseismic faulting in the Coastal Range, eastern Taiwan. Quaternary Science Reviews, 240, 106369. https://doi.org/10.1016/j.quascirev.2020.106369

Coltorti, M., and Farabollini, P. (2008). Late Pleistocene and Holocene fluvial-coastal evolution of an uplifting area: the Tronto River (Central Eastern Italy). Quaternary International, 189(1), 39-55. https://doi.org/10.1016/j.quaint.2007.09.032

De Gelder, G., Jara-Muñoz, J., Melnick, D., Fernández-Blanco, D., Rouby, H., Pedoja, K., Husson, L., Armijo, R., and Lacassin, R. (2020). How do sea-level curves influence modeled marine terrace sequences? Quaternary Science Reviews, 229, 106132. https://doi.org/10.1016/j.quascirev.2019.106132

Demdoum, A., Hamed, Y., Feki, M., Hadji, R., and Djebbar, M. (2015). Multi-tracer investigation of groundwater in el eulma basin (northwestern Algeria), North Africa. Arabian Journal of Geosciences, 8, 3321-3333. https://doi.org/10.1007/s12517-014-1377-z

Durand-Delga, M. (2011). La recherche géologique française en Algérie du Nord après 1962. Travaux du Comité français d'Histoire de la Géologie, 3(10), 217-222. https://hal.archives-ouvertes.fr/hal-00913987.

El Mekki, A., Hadji, R., and Chemseddine, F. (2017). Use of slope failures inventory and climatic data for landslide susceptibility, vulnerability, and risk mapping in souk Ahras region. Mining Science, 24, 237-249.

Figueiredo, P. M., Rockwell, T. K., Cabral, J., and Lira, C. P. (2019). Morphotectonics in a low tectonic rate area: Analysis of the southern Portuguese Atlantic coastal region. Geomorphology, 326, 132-151. https://doi.org/10.1016/j.geomorph.2018.02.019

Freisleben, R., Jara-Muñoz, J., Melnick, D., Martínez, J. M., and Strecker, M. R. (2021). Marine terraces of the last interglacial period along the Pacific coast of South America (1° N-40° S). Earth System Science Data, 13(6), 2487-2513. https://doi.org/10.5194/essd-13-2487-2021

Hadji, R., Limani, Y., Baghem, M., and Demdoum, A. (2013). Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quaternary International, 302, 224-237. https://doi.org/10.1016/j.quaint.2012.11.027

Hamad, A., Hadji, R., Boubaya, D., Brahmi, S., Baali, F., Legrioui, R., and Hamed, Y. (2021). Integrating gravity data for structural investigation of the Youkous-Tebessa and Foussana Talah transboundary basins (North Africa). Euro-Mediterranean Journal for Environmental Integration, 6(2), 1-11. https://doi.org/10.1007/s41207-021-00270-7

Harbi, A., Maouche, S., Vaccari, F., Aoudia, A., Oussadou, F., Panza, G. F., and Benouar, D. (2007). Seismicity, seismic input, and site effects in the Sahel-Algiers region (North Algeria). Soil Dynamics and Earthquake Engineering, 27(5), 427-447. https://doi.org/10.1016/j.soildyn.2006.10.002

Harris, P. T., Macmillan-Lawler, M., Rupp, J., and Baker, E. K. (2014). Geomorphology of the oceans. Marine Geology, 352, 4-24. https://doi.org/10.1016/j.margeo.2014.01.011

Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., and Reimer, P. J. (2020). Marine20-the marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon, 62(4), 779-820. https://doi.org/10.1017/RDC.2020.68

Jara-Muñoz, J., Melnick, D., Pedoja, K., and Strecker, M. R. (2019). TerraceM-2: A Matlab® interface for mapping and modeling marine and lacustrine terraces. Frontiers in Earth Science, 7, 255. https://doi.org/10.3389/feart.2019.00255

Malik, J. N., Sahoo, A. K., Shah, A. A., Shinde, D. P., Juyal, N., and Singhvi, A. K. (2010). Paleoseismic evidence from trench investigation along Hajipur fault, Himalayan Frontal Thrust, NW Himalaya: implications of the faulting pattern on landscape evolution and seismic hazard. Journal of structural geology, 32(3), 350-361. https://doi.org/10.1016/j.jsg.2010.01.005

Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadad, Y., and Haddoum, H. (2011). Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics, 509(1-2), 69-80. https://doi.org/10.1016/j.tecto.2011.06.003

Matsumoto, H., Dickson, M. E., and Kench, P. S. (2021). Preservation and destruction of Holocene marine terraces: the effects of episodic versus gradual relative sea-level change. Geophysical Research Letters, 48(19), e2021GL094543. https://doi.org/10.1029/2021GL094543

Meghraoui, M. (1991). Blind reverse faulting system associated with the Mont Chenoua-Tipaza earthquake of 29 October 1989 (north-central Algeria). Terra Nova, 3(1), 84-92. https://doi.org/10.1111/j.1365-3121.1991.tb00847.x

Meghraoui, M., and Doumaz, F. (1996). Earthquake-induced flooding and paleoseismicity of the El Asnam, Algeria, fault‐related fold. Journal of Geophysical Research: Solid Earth, 101(B8), 17617-17644. https://doi.org/10.1029/96JB00650

Meghraoui, M., Maouche, S., Chemaa, B., Cakir, Z., Aoudia, A., Harbi, A., and Benhamouda, F. (2004). Coastal uplift and thrust faulting associated with the Mw= 6.8 Zemmouri (Algeria) earthquake of 21 May 2003. Geophysical Research Letters, 31(19), L19605. https://doi.org/10.1029/2004GL020466

Meghraoui, M., Philip, H., Albarede, F., and Cisternas, A. (1988). Trench investigations through the trace of the 1980 El Asnam thrust fault: Evidence for paleoseismicity. Bulletin of the Seismological Society of America, 78(2), 979-999. https://doi.org/10.1785/BSSA0780020979

Mouici, R., Baali, F., Hadji, R., Boubaya, D., Audra, P., Fehdi, C. É., and Arfib, B. (2017). Geophysical, Geotechnical, and Speleologic assessment for karst-sinkhole collapse genesis in Cheria plateau (NE Algeria). Mining Science, 24, 59-71.

Muhs, D. R., Schumann, R. R., Groves, L. T., Simmons, K. R., and Florian, C. R. (2021). The marine terraces of Santa Cruz Island, California: Implications for glacial isostatic adjustment models of last-interglacial sea-level history. Geomorphology, 389, 107826. https://doi.org/10.1016/j.geomorph.2021.107826

Nocquet, J. M., and Calais, E. (2004). Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure and applied geophysics, 161(3), 661-681. https://doi.org/10.1007/s00024-003-2468-z

Normand, R., Simpson, G., Herman, F., Biswas, R. H., Bahroudi, A., and Schneider, B. (2019). Dating and morpho-stratigraphy of uplifted marine terraces in the Makran subduction zone (Iran). Earth Surface Dynamics, 7(1), 321-344. https://doi.org/10.5194/esurf-7-321-2019

Saillard, M., Hall, S. R., Audin, L., Farber, D. L., Regard, V., and Hérail, G. (2011). Andean coastal uplift and active tectonics in southern Peru: 10Be surface exposure dating of differentially uplifted marine terrace sequences (San Juan de Marcona,~15.4 S). Geomorphology, 128(3-4), 178-190. https://doi.org/10.1016/j.geomorph.2011.01.004

Scerri, S. (2019). Sedimentary Evolution and Resultant Geological Landscapes. In: Gauci, R., Schembri, J. (eds), Landscapes and Landforms of the Maltese Islands. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-15456-1_4

Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., and Gasperini, P. (2007). Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180-1200. https://doi.org/10.1111/j.1365-246X.2007.03367.x

Singh, A. P., Shukla, A., Kumar, M. R., and Thakkar, M. G. (2017). Characterizing surface geology, liquefaction potential, and maximum intensity in the Kachchh seismic zone, Western India, through microtremor analysis. Bulletin of the Seismological Society of America, 107(3), 1277-1292. https://doi.org/10.1785/0120160264

Stiros, S. C., Pirazzoli, P. A., and Fontugne, M. (2009). New evidence of Holocene coastal uplift in the Strophades Islets (W Hellenic Arc, Greece). Marine Geology, 267(3-4), 207-211. https://doi.org/10.1016/j.margeo.2009.09.002

Taib, H., Benabbas, C., Khiari, A., Hadji, A., Dinar, H. (2022). Geomatics-based assessment of the neotectonic landscape evolution along the tebessa-morsott-youkous collapsed basin, Algeria. Geomatics, Land management and Landscape, 3, 131-146. https://doi.org/10.15576/GLL/2022.3.131

Tamani, F., Hadji, R., Hamad, A., and Hamed, Y. (2019). Integrating remotely sensed and GIS data for the detailed geological mapping in semi-arid regions: case of Youks les Bains Area, Tebessa Province, NE Algeria. Geotechnical and Geological Engineering, 37(4), 2903-2913. https://doi.org/10.1007/s10706-019-00807-2

Thompson, S. B., and Creveling, J. R. (2021). A global database of marine isotope substages 5a and 5c marine terraces and paleo shoreline indicators. Earth System Science Data, 13(7), 3467-3490. https://doi.org/10.5194/essd-13-3467-2021

Von Suchodoletz, H., Gärtner, A., Hoth, S., Umlauft, J., Sukhishvili, L., and Faust, D. (2016). Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering-The Kura River (southern Caucasus). Geomorphology, 266, 53-65. https://doi.org/10.1016/j.geomorph.2016.04.026

Whitehouse, P. L., Gomez, N., King, M. A., and Wiens, D. A. (2019). Solid Earth change and the evolution of the Antarctic Ice Sheet. Nature Communications, 10(1), 1-14. https://doi.org/10.1038/s41467-018-08068-y

Zeqiri, R. R., Riheb, H., Karim, Z., Younes, G., Rania, B., and Aniss, M. (2019). Analysis of safety factor of security plates in the mine" Trepça" Stantërg. Mining Science, 26, 21-36. https://doi.org/10.37190/msc192602

Downloads

Published

2023-06-30

How to Cite

Haythem, D., Khiari, A., Zineb, M., Taib, H., Hana, N., & Bilal, B. (2023). Uplifted marine terraces by active coastal tectonic deformation along the east of Algiers: implications for African and European plate convergence and sea-level curves. Boletín Geológico Y Minero, 134(2), 57–67. https://doi.org/10.21701/bolgeomin/134.2/004

Issue

Section

Articles