Terrazas marinas levantadas por deformación tectónica costera activa a lo largo del este de Argel: implicaciones para la convergencia de las placas africana y europea y las curvas del nivel del mar

Autores/as

  • Dinar Haythem Larbi Ben M’hidi University
  • Abdelkader Khiari Larbi Ben M’hidi University
  • Mansouri Zineb Batna 2 University
  • Hassan Taib Larbi Ben M’hidi University
  • Nouali Hana Larbi Ben M’hidi University
  • Boumaza Bilal People’s Friendship University of Russia

DOI:

https://doi.org/10.21701/bolgeomin/134.2/004

Palabras clave:

Terrazas marinas, Tectónica costera activa, Convergencia de placas, Terremoto, Marcadores geomórficos

Resumen


Las terrazas marinas son accidentes geológicos compuestos por superficies elevadas y planas y pendientes pronunciadas. La evolución de estas terrazas está influida en gran medida por la deformación tectónica costera activa. Este estudio investiga el levantamiento de las terrazas marinas a lo largo de la costa oriental de Argel y sus implicaciones para la convergencia de las placas africana y europea y las curvas del nivel del mar. El objetivo del estudio de las terrazas marinas en la zona de Zemmouri es comprender mejor la evolución de las costas de la Tierra y cómo han sido modeladas a lo largo del tiempo por procesos naturales como los cambios del nivel del mar, la actividad tectónica, los parámetros geomórficos y la erosión. Las terrazas marinas proporcionan información valiosa sobre la historia de los cambios del nivel del mar y el ritmo de elevación o hundimiento tectónico de las zonas costeras. Para analizar el impacto del nivel del mar en las terrazas marinas se utilizaron fuentes de datos secundarias, como información cualitativa e imágenes de satélite de alta resolución (SRTM 30 m y ALOS 12,5 m). El trabajo de campo realizado con GPS y altímetros en el lugar del terremoto de Mw=6,8 de Zemmouri, ocurrido el 21 de mayo de 2003, reveló la presencia de dos terrazas marinas bien conservadas, que sirven de marcadores importantes para medir la tasa de deslizamiento de la falla a largo plazo. El análisis pone de relieve la importancia de la deformación tectónica costera activa en la configuración de las costas. Esta  investigación ofrece nuevas perspectivas sobre los procesos en curso de convergencia de placas y cambio del nivel del mar a lo largo de la costa oriental de Argel, contribuyendo a nuestra comprensión global de la evolución costera y el potencial de riesgo sísmico en la región.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ambraseys, N. N., and Vogt, J. (1988). Material for the investigation of the seismicity of the region of Algiers. European Earthquake Engineering, 3, 16-29.

Angelier, J., and Chen, R. F. (2002). Soulèvement et plissement tectoniques révélés par analyse mathématique empirique de profils longitudinaux de rivières: un cas à Taiwan. Comptes Rendus Geoscience, 334(15), 1103-1111. https://doi.org/10.1016/S1631-0713(02)01850-3

Anis, Z., Wissem, G., Riheb, H., Biswajeet, P., and Essghaier, G. M. (2019). Effects of clay properties in the landslides genesis in flysch massif: Case study of Aïn Draham, North Western Tunisia. Journal of African Earth Sciences, 151, 146-152. https://doi.org/10.1016/j.jafrearsci.2018.12.005

Authemayou, C., Pedoja, K., Heddar, A., Molliex, S., Boudiaf, A., Ghaleb, B., Lanoe, B. V. V., Delcaillau, B., Djellit, H., Yelles, K., and Nexer, M. (2017). Coastal uplift west of Algiers (Algeria): pre-and post-Messinian sequences of marine terraces and rasas and their associated drainage pattern. International Journal of Earth Sciences, 106(1), 19-41. https://doi.org/10.1007/s00531-016-1292-5

Ayadi, A., Dorbath, C., Ousadou, F., Maouche, S., Chikh, M., Bounif, M. A., and Meghraoui, M. (2008). Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model. Journal of Geophysical Research: Solid Earth, 113(B9). https://doi.org/10.1029/2007JB005257

Belabbès, S., Meghraoui, M., Çakir, Z., and Bouhadad, Y. (2009). InSAR analysis of a blind thrust rupture and related active folding: the 1999 Ain Temouchent earthquake (Mw 5.7, Algeria) case study. Journal of Seismology, 13(4), 421-432. https://doi.org/10.1007/s10950-008-9135-x

Benouar, D. (1994). Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Annals of geophysics, 37(4). https://doi.org/10.4401/ag-4466

Bilbao-Lasa, P., Jara-Muñoz, J., Pedoja, K., Álvarez, I., Aranburu, A., Iriarte, E., and Galparsoro, I. (2020). Submerged Marine Terraces Identification and an Approach for Numerical Modeling the Sequence Formation in the Bay of Biscay (Northeastern Iberian Peninsula). Frontiers in Earth Science, 8, 47. https://doi.org/10.3389/feart.2020.00047

Biolchi, S., Furlani, S., Devoto, S., Gauci, R., Castaldini, D., and Soldati, M. (2016). Geomorphological identification, classification, and spatial distribution of coastal landforms of Malta (Mediterranean Sea). Journal of Maps, 12(1), 87-99. https://doi.org/10.1080/17445647.2014.984001

Bougrine, A., Yelles-Chaouche, A. K., and Calais, E. (2019). Active deformation in Algeria from continuous GPS measurements. Geophysical Journal International, 217(1), 572-588. https://doi.org/10.1093/gji/ggz035

Bounif, A., Bezzeghoud, M., Dorbath, L., Legrand, D., Deschamps, A., Rivera, L., and Benhallou, H. (2003). Seismic source study of the 1989, October 29, Chenoua (Algeria) earthquake from aftershocks, broad-band and strong ground motion records. Annals of Geophysics, 46(4).

Bounif, A., Dorbath, C., Ayadi, A., Meghraoui, M., Beldjoudi, H., Laouami, N., and Maouche, S. (2004). The 21 May 2003 Zemmouri (Algeria) earthquake Mw 6.8: relocation and aftershock sequence analysis. Geophysical Research Letters, 31(19), L19606. https://doi.org/10.1029/2004GL020586

Cerrone, C., Di Donato, V., Mazzoli, S., Robustelli, G., Soligo, M., Tuccimei, P., and Ascione, A. (2021). Development and deformation of marine terraces: Constraints to the evolution of the Campania Plain Quaternary coastal basin (Italy). Geomorphology, 385, 107725. https://doi.org/10.1016/j.geomorph.2021.107725

Chen, W. S., Yang, C. Y., Chen, S. T., and Huang, Y. C. (2020). New insights into Holocene marine terrace development caused by seismic and aseismic faulting in the Coastal Range, eastern Taiwan. Quaternary Science Reviews, 240, 106369. https://doi.org/10.1016/j.quascirev.2020.106369

Coltorti, M., and Farabollini, P. (2008). Late Pleistocene and Holocene fluvial-coastal evolution of an uplifting area: the Tronto River (Central Eastern Italy). Quaternary International, 189(1), 39-55. https://doi.org/10.1016/j.quaint.2007.09.032

De Gelder, G., Jara-Muñoz, J., Melnick, D., Fernández-Blanco, D., Rouby, H., Pedoja, K., Husson, L., Armijo, R., and Lacassin, R. (2020). How do sea-level curves influence modeled marine terrace sequences? Quaternary Science Reviews, 229, 106132. https://doi.org/10.1016/j.quascirev.2019.106132

Demdoum, A., Hamed, Y., Feki, M., Hadji, R., and Djebbar, M. (2015). Multi-tracer investigation of groundwater in el eulma basin (northwestern Algeria), North Africa. Arabian Journal of Geosciences, 8, 3321-3333. https://doi.org/10.1007/s12517-014-1377-z

Durand-Delga, M. (2011). La recherche géologique française en Algérie du Nord après 1962. Travaux du Comité français d'Histoire de la Géologie, 3(10), 217-222. https://hal.archives-ouvertes.fr/hal-00913987.

El Mekki, A., Hadji, R., and Chemseddine, F. (2017). Use of slope failures inventory and climatic data for landslide susceptibility, vulnerability, and risk mapping in souk Ahras region. Mining Science, 24, 237-249.

Figueiredo, P. M., Rockwell, T. K., Cabral, J., and Lira, C. P. (2019). Morphotectonics in a low tectonic rate area: Analysis of the southern Portuguese Atlantic coastal region. Geomorphology, 326, 132-151. https://doi.org/10.1016/j.geomorph.2018.02.019

Freisleben, R., Jara-Muñoz, J., Melnick, D., Martínez, J. M., and Strecker, M. R. (2021). Marine terraces of the last interglacial period along the Pacific coast of South America (1° N-40° S). Earth System Science Data, 13(6), 2487-2513. https://doi.org/10.5194/essd-13-2487-2021

Hadji, R., Limani, Y., Baghem, M., and Demdoum, A. (2013). Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quaternary International, 302, 224-237. https://doi.org/10.1016/j.quaint.2012.11.027

Hamad, A., Hadji, R., Boubaya, D., Brahmi, S., Baali, F., Legrioui, R., and Hamed, Y. (2021). Integrating gravity data for structural investigation of the Youkous-Tebessa and Foussana Talah transboundary basins (North Africa). Euro-Mediterranean Journal for Environmental Integration, 6(2), 1-11. https://doi.org/10.1007/s41207-021-00270-7

Harbi, A., Maouche, S., Vaccari, F., Aoudia, A., Oussadou, F., Panza, G. F., and Benouar, D. (2007). Seismicity, seismic input, and site effects in the Sahel-Algiers region (North Algeria). Soil Dynamics and Earthquake Engineering, 27(5), 427-447. https://doi.org/10.1016/j.soildyn.2006.10.002

Harris, P. T., Macmillan-Lawler, M., Rupp, J., and Baker, E. K. (2014). Geomorphology of the oceans. Marine Geology, 352, 4-24. https://doi.org/10.1016/j.margeo.2014.01.011

Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., and Reimer, P. J. (2020). Marine20-the marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon, 62(4), 779-820. https://doi.org/10.1017/RDC.2020.68

Jara-Muñoz, J., Melnick, D., Pedoja, K., and Strecker, M. R. (2019). TerraceM-2: A Matlab® interface for mapping and modeling marine and lacustrine terraces. Frontiers in Earth Science, 7, 255. https://doi.org/10.3389/feart.2019.00255

Malik, J. N., Sahoo, A. K., Shah, A. A., Shinde, D. P., Juyal, N., and Singhvi, A. K. (2010). Paleoseismic evidence from trench investigation along Hajipur fault, Himalayan Frontal Thrust, NW Himalaya: implications of the faulting pattern on landscape evolution and seismic hazard. Journal of structural geology, 32(3), 350-361. https://doi.org/10.1016/j.jsg.2010.01.005

Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadad, Y., and Haddoum, H. (2011). Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics, 509(1-2), 69-80. https://doi.org/10.1016/j.tecto.2011.06.003

Matsumoto, H., Dickson, M. E., and Kench, P. S. (2021). Preservation and destruction of Holocene marine terraces: the effects of episodic versus gradual relative sea-level change. Geophysical Research Letters, 48(19), e2021GL094543. https://doi.org/10.1029/2021GL094543

Meghraoui, M. (1991). Blind reverse faulting system associated with the Mont Chenoua-Tipaza earthquake of 29 October 1989 (north-central Algeria). Terra Nova, 3(1), 84-92. https://doi.org/10.1111/j.1365-3121.1991.tb00847.x

Meghraoui, M., and Doumaz, F. (1996). Earthquake-induced flooding and paleoseismicity of the El Asnam, Algeria, fault‐related fold. Journal of Geophysical Research: Solid Earth, 101(B8), 17617-17644. https://doi.org/10.1029/96JB00650

Meghraoui, M., Maouche, S., Chemaa, B., Cakir, Z., Aoudia, A., Harbi, A., and Benhamouda, F. (2004). Coastal uplift and thrust faulting associated with the Mw= 6.8 Zemmouri (Algeria) earthquake of 21 May 2003. Geophysical Research Letters, 31(19), L19605. https://doi.org/10.1029/2004GL020466

Meghraoui, M., Philip, H., Albarede, F., and Cisternas, A. (1988). Trench investigations through the trace of the 1980 El Asnam thrust fault: Evidence for paleoseismicity. Bulletin of the Seismological Society of America, 78(2), 979-999. https://doi.org/10.1785/BSSA0780020979

Mouici, R., Baali, F., Hadji, R., Boubaya, D., Audra, P., Fehdi, C. É., and Arfib, B. (2017). Geophysical, Geotechnical, and Speleologic assessment for karst-sinkhole collapse genesis in Cheria plateau (NE Algeria). Mining Science, 24, 59-71.

Muhs, D. R., Schumann, R. R., Groves, L. T., Simmons, K. R., and Florian, C. R. (2021). The marine terraces of Santa Cruz Island, California: Implications for glacial isostatic adjustment models of last-interglacial sea-level history. Geomorphology, 389, 107826. https://doi.org/10.1016/j.geomorph.2021.107826

Nocquet, J. M., and Calais, E. (2004). Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure and applied geophysics, 161(3), 661-681. https://doi.org/10.1007/s00024-003-2468-z

Normand, R., Simpson, G., Herman, F., Biswas, R. H., Bahroudi, A., and Schneider, B. (2019). Dating and morpho-stratigraphy of uplifted marine terraces in the Makran subduction zone (Iran). Earth Surface Dynamics, 7(1), 321-344. https://doi.org/10.5194/esurf-7-321-2019

Saillard, M., Hall, S. R., Audin, L., Farber, D. L., Regard, V., and Hérail, G. (2011). Andean coastal uplift and active tectonics in southern Peru: 10Be surface exposure dating of differentially uplifted marine terrace sequences (San Juan de Marcona,~15.4 S). Geomorphology, 128(3-4), 178-190. https://doi.org/10.1016/j.geomorph.2011.01.004

Scerri, S. (2019). Sedimentary Evolution and Resultant Geological Landscapes. In: Gauci, R., Schembri, J. (eds), Landscapes and Landforms of the Maltese Islands. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-15456-1_4

Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., and Gasperini, P. (2007). Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180-1200. https://doi.org/10.1111/j.1365-246X.2007.03367.x

Singh, A. P., Shukla, A., Kumar, M. R., and Thakkar, M. G. (2017). Characterizing surface geology, liquefaction potential, and maximum intensity in the Kachchh seismic zone, Western India, through microtremor analysis. Bulletin of the Seismological Society of America, 107(3), 1277-1292. https://doi.org/10.1785/0120160264

Stiros, S. C., Pirazzoli, P. A., and Fontugne, M. (2009). New evidence of Holocene coastal uplift in the Strophades Islets (W Hellenic Arc, Greece). Marine Geology, 267(3-4), 207-211. https://doi.org/10.1016/j.margeo.2009.09.002

Taib, H., Benabbas, C., Khiari, A., Hadji, A., Dinar, H. (2022). Geomatics-based assessment of the neotectonic landscape evolution along the tebessa-morsott-youkous collapsed basin, Algeria. Geomatics, Land management and Landscape, 3, 131-146. https://doi.org/10.15576/GLL/2022.3.131

Tamani, F., Hadji, R., Hamad, A., and Hamed, Y. (2019). Integrating remotely sensed and GIS data for the detailed geological mapping in semi-arid regions: case of Youks les Bains Area, Tebessa Province, NE Algeria. Geotechnical and Geological Engineering, 37(4), 2903-2913. https://doi.org/10.1007/s10706-019-00807-2

Thompson, S. B., and Creveling, J. R. (2021). A global database of marine isotope substages 5a and 5c marine terraces and paleo shoreline indicators. Earth System Science Data, 13(7), 3467-3490. https://doi.org/10.5194/essd-13-3467-2021

Von Suchodoletz, H., Gärtner, A., Hoth, S., Umlauft, J., Sukhishvili, L., and Faust, D. (2016). Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering-The Kura River (southern Caucasus). Geomorphology, 266, 53-65. https://doi.org/10.1016/j.geomorph.2016.04.026

Whitehouse, P. L., Gomez, N., King, M. A., and Wiens, D. A. (2019). Solid Earth change and the evolution of the Antarctic Ice Sheet. Nature Communications, 10(1), 1-14. https://doi.org/10.1038/s41467-018-08068-y

Zeqiri, R. R., Riheb, H., Karim, Z., Younes, G., Rania, B., and Aniss, M. (2019). Analysis of safety factor of security plates in the mine" Trepça" Stantërg. Mining Science, 26, 21-36. https://doi.org/10.37190/msc192602

Descargas

Publicado

2023-06-30

Cómo citar

Haythem, D., Khiari, A., Zineb, M., Taib, H., Hana, N., & Bilal, B. (2023). Terrazas marinas levantadas por deformación tectónica costera activa a lo largo del este de Argel: implicaciones para la convergencia de las placas africana y europea y las curvas del nivel del mar. Boletín Geológico Y Minero, 134(2), 57–67. https://doi.org/10.21701/bolgeomin/134.2/004

Número

Sección

Artículos