Geophysical methods in protected environments. Electrical resistivity tomography
DOI:
https://doi.org/10.21701/bolgeomin.128.1.010Keywords:
geophysics, hydrogeology, lake, resistivity, electrical resistivity, tomographyAbstract
There is a strong interest in protecting the environment with the aim of its long-term preservation. Sometimes the heritage value of these natural areas is related to their biodiversity as there are restricted ecosystems that depend directly on them. In other cases, a singular geological record might exist, essential for the understanding of certain processes affecting the planet, such as volcanic events or glacial periods.
To achieve the protection and conservation of these areas it is necessary to generate knowledge about the distribution of geological materials and groundwater masses, to study the parameters that dominate the behavior of these systems, and then define those elements that require special protection or attention. In these protected environments, research methods with minimal environmental impact should be used. Therefore, indirect methods, such as geophysical techniques, are reliable and complementary tools with a minimum environmental impact and are therefore useful for researching these unique areas.
The IGME has conducted several geophysical surveys in different protected environments in Spain with the aim of achieving a better understanding, and thus facilitate their preservation and exploitation in a sustainable manner. In this paper, we present a review of some case studies where geophysical methods have been used. In all the cases, electrical resistivity tomography has been the axis of the geophysical research and stands out due to its great effectiveness. The main objective of this communication is to divulge and increase awareness of the important role that these geophysical methods can play in the sustainable study of these unique places.
Downloads
References
Abem. 2010. Terrameter SAS 4000/ SAS 1000 manual instruction, 23/6/2015, http://www.abem.se/support/downloads/user-manuals/manual_terrameter.pdf
Ball, L.B., Ge, S., Caine, J.S., Revil, A. y Jardani, A. 2010. Constraining fault-zone hydrogeology through integrated hydrological and geolelectrical analysis. Hydrogeology Journal, 18 (5), 1057-1067. https://doi.org/10.1007/s10040-010-0587-z
Calvet, M. 2004. The quaternary glaciation of the Pyrenees. In J. Ehlers, P.L. and Gibbard (eds). Quaternary Glaciations - Extent and Chronology. Part I: Europe. Elsevier, Amsterdam, 119-128. https://doi.org/10.1016/S1571-0866(04)80062-9
Chambers, J.E., Kuras, O., Meldrum, P.I., Ogilvy, R.D. y Hollands J. 2006. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71 (6), 231-239. https://doi.org/10.1190/1.2360184
CHE. 2002. Estudio de recursos hídricos subterráneos de los acuíferos de la margen izquierda de la cuenca del Ebro. Zona oriental. Litera Alta (09.304). Informe inédito. Confederación Hidrográfica del Ebro, Zaragoza.
Edwards, L.S. 1977. A Modified Pseudosection for Resistivity and Induced Polarization. Geophysics. 42, 1020-1036. https://doi.org/10.1190/1.1440762
Galazoulas, C. E., Mertzanides, C.Y., Petalas, C.P. y Kargiotis, E. K. 2015. Large scale electrical resistivity tomography survey correlated to hydrogeological data for mapping groundwater salinization: a case study from a multilayered coastal aquifer in Rhodope, Northeastern Greece. Environmental processes, 2 (1), 19-35. https://doi.org/10.1007/s40710-015-0061-y
Geotomo, 2015. Manual del software res2dinv 23/6/2015 http://www.geotomosoft.com/r2dimanu.zip
Griffiths, D.H. y Barker, R.D. 1993. Two-Dimensional Resistivity Imaging and Modeling in areas of Complex Geology. Journal of Applied Geophysics, 29, 211-226. https://doi.org/10.1016/0926-9851(93)90005-J
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Jalut, G., García-Ruiz, J.M., Martí-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T. y Dedoubat, J.J. 2006. Climate variability in the Spanish Pyrenees during the last 30,000 tr revealed by El Portalet sequence. Quaternary Research. 66, 38-52. https://doi.org/10.1016/j.yqres.2006.02.004
Heredia, J., Ruiz, J.M., García de Domingo, A., Rubio, F.M. y Ibarra, P. 2007. Empleo de técnicas geofísicas en la caracterización de la cuenca endorreica de Fuente de Piedra, Málaga (España). Sosa, D., and Ainchil, J. (ed.), Taller de Geofísica aplicada a la hidrogeología, V Congreso Argentino de Hidrogeología. III Seminario Hispano-Latinoamericano de Hidrología Subterránea. Paraná (Argentina). 95-104.
Heredia, J., García de Domingo, A., Ruiz, J.M., Ibarra, P., y Rubio F.M. 2009. Caracterización hidrogeológica y modelización numérica de un sistema de flujo con densidad variable: sistema hidrogeológico de la laguna de Fuente de Piedra (Málaga). Informe inédito. Centro de Documentación del IGME, Madrid. Nº F.D. 63833, 169 págs + anexos
Hughes, P.D., y Woodward, J.C. 2008. Timing of glaciation in the Mediterranean mountains during the last cold stage. Journal of Quaternary Science, 23 (6-7), 575-588. https://doi.org/10.1002/jqs.1212
Ibarra, P., Fernández, I., Verges, Y., y Mora-Pérez, E.E. 2006. Estudio mediante Sondeos Electromagnéticos en el Dominio de Tiempos con fines hidrogeológicos en la Laguna de Fuente de Piedra (Malaga). Informe inédito. Centro de Documentación del IGME, Madrid. Nº F.D. 63358, 33 págs. + anexos
Ibarra, P., Rubio, F.M., Heredia, J., Ruiz, J.M., y G. de Domingo, A. 2008. Geofísica combinada para modelización hidrogeológica en Fuente de Piedra. Resúmenes 6ª Asamblea Hispano-Portuguesa de Geodesia y Geofísica. Tomar (Portugal), 295-296.
IGME, 1994. Hoja de Fonz (288). Mapa Geológico de España (E. 1:50 000), 89 págs.
IGME, 1995. Hoja de Benabarre (289). Mapa Geológico de España (E. 1:50 000), 191 págs.
IGME, 2007. Hoja de Os de Balaguer (327). Mapa Geológico de España (E. 1:50 000), 113 págs.
ITGE. 1983. Estudio geoeléctrico en Fuente de Piedra. Malaga. Informe inédito. Centro de Documentación del IGME, Madrid. Nº F.D. 40231, 127 págs.
ITGE. 1984. Estudio Hidrogeológico para conservación de la naturaleza en cuenca del sur de España y Canarias: Laguna de Fuente de Piedra. Informe inédito. Centro de Documentación del IGME, Madrid. Nº F.D. 31135, 346 págs.
ITGE. 1998. Hidrogeología de la reserva natural de la Laguna de Fuente de Piedra (Malaga). Informe inédito. Centro de Documentación del IGME, Madrid. Nº F.D. 31206
Lago, M., y Pocovi, A. 1982. Nota preliminar sobre la presencia de estructuras fluidales en las ofitas del área de Estopiñán (provincia de Huesca), Acta Geológica Hispánica, 17, 4, 227-233
Loke, M.H. 1999. Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys. 23/7/2015, http://www.geomatrix.co.uk/tools/application-notes/Lokenote.pdf
Martínez-Pagán, P., Gómez-Ortiz, D., Martín-Crespo, T., Manteca, J.I., y M. 2013. The electrical resistivity tomography method in the detection of shallow mining cavities. A case study on the Victoria Cave, Cartagena (SE Spain). Engineering Geology, 156, 1-10. https://doi.org/10.1016/j.enggeo.2013.01.013
Martinez-Moreno, F.J., Pedrera, A., Ruano, P., Galindo-Zaldivar, J., Martos-Rosillo, S., Gonzalez-Castillo, L., Sánchez-Ubeda, J.P., y Marín-Lechado, C. 2013. Combined microgravity, electrical resistivity tomography and induced polarization to detect deeply buried caves: Algaidilla cave (Southern Spain). Engineering Geology, 162, 67-78. https://doi.org/10.1016/j.enggeo.2013.05.008
Martí-Bono, C. y García-Ruiz, J.M. (eds). 1994. El Glaciarismo Surpirenaico: nuevas aportaciones. Geoforma Ediciones, Logroño, 142 pp
Meads, L.N., Bentley, L.R., y Mendoza, C.A. 2003. Application of electrical resistivity imaging to the development of a geologic model for a proposed Edmonton landfill site. Canadian Geotechnical Journal, 40, 551-558. https://doi.org/10.1139/t03-017
Pérez-Bielsa, C., Lambán, L.J., Plata, J.L., Rubio, F.M., y Soto, R. 2012. Characterization of a karstic aquifer using magnetic resonance sounding (MRS) and electrical resistivity tomography (ERT): A case-study of Estaña Lakes (Northern Spain). Hydrogeology Journal, 20, 1045-1059. https://doi.org/10.1007/s10040-012-0839-1
Pérez-Bielsa, C. 2013. Funcionamiento hidrogeológico de un humedal hipogénico de origen kárstico en las sierras marginales pirenaicas. Tesis doctoral, Universidad Complutense de Madrid, 335 pp.
Plata, J.L., Rubio, F.M., Coronel, J., Rey, C., y Arias, M. 2007. Revisión de la información geofísica existente en el acuífero Almonte-Marismas (Doñana). Informe inédito. Centro de Documentación del IGME, Madrid. Tomo 1 Nº F.D. 63755, 276 págs y Tomo 2 Nº F.D. 63756, 283 págs.
Plata, J.L. y Rubio, F.M. 2009. Informe de las actividades geofísicas efectuadas en 2008 en las lagunas de Estaña (Huesca). Informe dentro del proyecto: Funcionamiento hidrogeológico de humedales relacionados con las aguas subterráneas en la Cuenca del Ebro. Informe inédito. Centro de Documentación del IGME, Madrid. Nº F.D. 63764, 200 págs.
Plata, J.L., Rubio, F.M., y Perez-Bielsa, C. 2010. Interpretación integrada de sondeos de resonancia magnética, perfiles de resistividad y testificación de sondeos en las lagunas de Estaña (Huesca). Informe inédito. Centro de Documentación del IGME, Madrid. Nº F.D. 63939, 226 págs. + anexos
Ratnakumari, Y., Rai, S.N., Thiagarajan, S., y Kumar, D. 2012. 2D Electrical resistivity imaging for delineation of deeper aquifers in a part of the Chandrabhaga river basin, Nagpur District, Maharashtra, India. Current Science, 102 (1), 61-69.
Ruiz, J.M., Rubio, F.M., Ibarra, P., García de Domingo, A., Heredia, J., y Araguas, L. 2006. Contribución de la tomografía eléctrica en la caracterización del sistema hidrogeológico de la laguna de Fuente de Piedra (Málaga). Las aguas subterráneas en los países mediterráneos, vol. 1, Serie: HIDROGEOLOGÍA Y AGUAS SUBTERRÁNEAS, 17, IGME, Madrid, 353- 358.
Salazar-Rincón, A., Mata-Campo, P., Rico-Herrero, M.T., Valero-Garcés, B.L., Oliva-Urcia, B., Ibarra, P., Rubio, F.M., y Grupo Horda. 2013. El paleolago de La Larri (valle de Pineta, Pirineos): significado en el contexto del último máximo glaciar en el Pirineo. Cuadernos de Investigación Geográfica, 39 (1), 97-116. https://doi.org/10.18172/cig.2001
Zhou, W., Beck, B.F., y Adams, A.L. 2002. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental Geology, 42, 922-928. https://doi.org/10.1007/s00254-002-0594-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.