Neodymium and Strontium isotopes as source indicators for terrigenous sediments deposited in NE Brazil

Authors

  • Itxaso Ruiz Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Count
  • Leopoldo Pena Department of Earth and Ocean Dynamics, University of Barcelona

DOI:

https://doi.org/10.21701/bolgeomin.129.4.003

Keywords:

Neodymium (Nd), paleoclimate, sedimentary basin, source, Strontium (Sr)

Abstract


This study investigates the sedimentary origin of materials deposited by the Amazon River over the last 30 kyr BP and reconstructs the precipitation pattern of the source area at the time of the erosion. For this purpose, fifteen samples of a down-core sediment record from the French Guiana margin have been used to analyse neodymium (Nd) and strontium (Sr) isotope ratios. The sample results (Sr: 0.71385±0.00166; εNd: -11.67±0.55) suggest that the western Amazon basin catchment area is the main source of the terrigenous material, and point to the Solimões river basin as the most probable origin. This study also discusses the strong coherence between the registered millennial events and the atmospheric settings of the region, which indicate humid land conditions for the Heinrich Stadials 1 and 2 compared to the Last Glacial Maximum, and during the Last Glacial Maximum compared to the early Holocene.

Downloads

Download data is not yet available.

References

Allégre C.J., Dupré B., Négrel P. and Gaillardet J. 1996. Sr-Nd-Pb isotope systematics in Amazon and Congo River systems: Constraints about erosion processes. Chemical Geology, 131, 93-112. https://doi.org/10.1016/0009-2541(96)00028-9

Allison, M.A., Lee, M.T., Ogston, A.S. and Aller, R.C., 2000. Origin of Amazon mud banks along the northeast coast of South America. Marine Geology, 163, 241-256. https://doi.org/10.1016/S0025-3227(99)00120-6

Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P. and Veliz, C. 2001a. Tropical climate changes at millennial and orbital timescales in the Bolivian Altiplano. Nature, 409, 698-701. https://doi.org/10.1038/35055524 PMid:11217855

Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D. and Broda, J.P., 2001b. The history of South American tropical precipitation for the past 25,000 years. Science, 291, 640-643. https://doi.org/10.1126/science.291.5504.640 PMid:11158674

Baker, P.A. and Fritz, S.C. 2015. Nature and causes of Quaternary climate variation of tropical South America. Quaternary Science Reviews, 124, 31-47. https://doi.org/10.1016/j.quascirev.2015.06.011

Basu, A.R., Sharma M. and DeCelles P.G. 1990. Nd, Sr-isotopic provenance and trace element geochemistry of Amazonian foreland basin fluvial sands, Bolivia and Peru: implications for ensialic Andean orogeny. Earth and Planetary Science Letters, 10, 01-17. https://doi.org/10.1016/0012-821X(90)90172-T

Bayon, G., German, C.R., Boella, R.M., Milton, J.A., Taylor, R.N. and Nesbitt, R.W. 2002. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology, 187, 179-199. https://doi.org/10.1016/S0009-2541(01)00416-8

Behling, H., Arz, H.W., Pätzold, J and Wefer, G. 2000. Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1, Quaternary Science Reviews, 19, 981- 994. https://doi.org/10.1016/S0277-3791(99)00046-3

Berger, A. and Loutre, M.F. 1991. Insolation values for the climate of the last 10 million of years. Quaternary Sciences Review, 10 (4), 297-317. https://doi.org/10.1016/0277-3791(91)90033-Q

Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice,L., and Dutra-Maia, P. 2011. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles, Geochemistry Geophysics Geosystems, 12, Q03008. https://doi.org/10.1029/2010GC003380

Bourlès, B., Gouriou, Y. and Chuchla R. 1999. On the circulation in the upper layer of the western equatorial Atlantic.Journal of Geophysical Research, 104 (C9), 21151-21170. https://doi.org/10.1029/1999JC900058

Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d'Horta, F.M., Ribas, C.C., Vuille, M., Stott, L. D. and Auler, A.S. 2013. Climate change patterns in Amazonia and biodiversity. Nature Communications, 4, 1411. https://doi.org/10.1038/ncomms2415 PMid:23361002

Collins, J.A., Govin, A., Mulitza, S., Heslop, D., Zabel, M., Hartmann, J., Röhl, U. and Wefer, G. 2013. Abrupt shifts of the Sahara-Sahel boundary during Heinrich stadials. Climate of the Past, 9, 1181-1191. https://doi.org/10.5194/cp-9-1181-2013

Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Dias, P.L.S. and Viana, O. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434, 63-66. https://doi.org/10.1038/nature03365 PMid:15744298

Cruz, F.W., Vuille, M., Burns, S.J., Wang, X., Cheng, H.,Werner, M., Lawrence Edwards, R., Karmann, I., Auler, A.S., and Nguyen, H. 2009. Orbitally driven east-west antiphasing of South American precipitation. Nature Geosciences, 2, 210-214. https://doi.org/10.1038/ngeo444

Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x

DePaolo, D.J. and Wasserburg, G.J. 1976.Nd isotopic variations and petrogenetic models. Geophysical research letters, 3 (5), 249-252. https://doi.org/10.1029/GL003i005p00249

Figueiredo, J., Hoorn, C., van der Ven, P. and Soares, E. 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37, 619-622. https://doi.org/10.1130/G25567A.1

Gierlowski-Kordesch, E.H., Jacobson, A.D., Blum, J.D. and Valero Garces, B.L. 2008. Watershed reconstruction of a Paleocene-Eocene lake basin using Sr isotopes incarbonate rocks. Geological Society of America Bulletin, 120, 85-95. https://doi.org/10.1130/B26070.1

Goldstein, S.L., O'Nions, R.K. and Hamilton, P.J. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70, 221-236. https://doi.org/10.1016/0012-821X(84)90007-4

Goldstein, S.L. and Hemming, S.R. 2003. 6.17 - Long-lived Isotopic Tracers in Oceanography, Paleoceanography, and Ice-sheet Dynamics. Treatise on Geochemistry, 6, 453-489. https://doi.org/10.1016/B0-08-043751-6/06179-X

Grimm, A.M., Vera, C.S., Mechoso, C.R., 2005. 15. The South American monsoon system, in: Chang, C.P., Wang, B., Lau, N.-C.G. (Eds.) The global monsoon system: research and forecast. World Meteorological Organization, Geneva, Switzerland.

Grodsky, S.A. and Carton, J.A. 2002. Surface drifter pathways originating in the equatorial Atlantic cold tongue. Geophysical Research Letters, 29 (23), 2147. https://doi.org/10.1029/2002GL015788

Hemming, S.R. 2004. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics, 42, https://doi.org/10.1029/2003RG000128

RG1005.

Horbe, A.M.C., Trindade, I.R., Dantas, E.L., Santos, R.V. and Roddaz, M., 2014. Provenance of quaternary and modern alluvial deposits of the Amazonian floodplain (Brazil) inferred from major and trace elements and Pb-Nd-Sr isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 411, 144-154. https://doi.org/10.1016/j.palaeo.2014.06.019

Jacobsen, S.B. and Wasserburg, G.J. 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50 (1), 139-155. https://doi.org/10.1016/0012-821X(80)90125-9

Jaeschke, A., Rühlemann, C., Arz, H., Heil, G., and Lohmann, G. 2007. Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography, 22 (4). https://doi.org/10.1029/2006PA001391

Kanner, L.C., Burns, S.J., Cheng, H., and Edwards, R.L. 2012. High-Latitude Forcing of the South American Summer Monsoon During the Last Glacial. Science, 335, 570-573. https://doi.org/10.1126/science.1213397 PMid:22245741

Lentz, S.J. 1995. Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. Journal of Geophysical Research: Oceans, 100, 2391-2400. https://doi.org/10.1029/94JC01847

McDaniel, D.K., McLennan, S.M. and Hanson, G.N. 1997. Provenance of Amazon fan muds: constraints from Nd and Pb isotopes. Proceedings of the Ocean Drilling Program, Scientific Results, 155, 169-176. https://doi.org/10.2973/odp.proc.sr.155.207.1997

McLennan, S.M. Taylor, S.R. and McGregor V.R. 1984. Geochemistry of Archean metasedimentary rocks from West Greenland. Geochimica et Cosmochimica Acta, 48, 1-13. https://doi.org/10.1016/0016-7037(84)90345-4

Mechoso, C.R., Robertson, A.W., Ropelewski, C.F. and Grimm, A.M. 2015. 13. The American monsoon systems: an introduction, in: Chang, C.P., Wang, B., Lau, N.-C.G. (Eds.), The global monsoon system: research and forecast. World Meteorological Organization, Geneva, Switzerland.

Mearns, E.W. 1988. A samarium-neodimium isotopic survey of modem sediments from northern Britain. Chern. Gent., 73, 1- 13. https://doi.org/10.1016/0168-9622(88)90017-6

Mosblech, N.A.S., Bush, M.B., Gosling, W.D., Hodell, D.,Thomas, L., van Calsteren, P., Correa-Metrio, A., Valencia, B.G., Curtis, J. and vanWoesik, R. 2012. North Atlantic forcing of Amazonian precipitation during the last ice age. Natural Geosciences, 5 (11), 817-820. https://doi.org/10.1038/ngeo1588

Mulitza, S., Chiessi, C.M., Cruz, A.P.S., Frederichs, T.W., Gomes, J.G., Gurgel, M.H.C.,Haberkern, J., Huang, E., Jovane, L., Kuhnert, H., Pittauerová, D., Reiners, S-J., Roud, S.C., Schefuß, E., Schewe, F., Schwenk, T.A., Sicoli Seoane, J.C., Sousa, S.H.M.,Wangner, D.J. and Wiers, S. 2013. Response of Amazon sedimentation todeforestation, land use and climate variability. Cruise No.MSM20/3 - February 19- March 11, 2012 - Recife (Brazil) - Bridgetown (Barbados). MARIA S. MERIANBerichte, MSM20/3, 86 pp., DFGSenatskommission für Ozeanographie,

North Greenland Ice Core Project members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431 (7005), 147-151. https://doi.org/10.1038/nature02805 PMid:15356621

Parra, M. and Pujos, M. 1998. Origin of late Holocene finegrained sediments on the French Guiana shelf. Continental Shelf Research, 18, 1613-1629. https://doi.org/10.1016/S0278-4343(98)00053-3

Peterson, R.G. and Stramma, L. 1991. Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography 26, 1-73. https://doi.org/10.1016/0079-6611(91)90006-8

Prado, L.F., Wainer, I., and Chiessi, C.M. 2013a. Mid- Holocene PMIP3/CMIP5 model results: Intercomparison for the South American Monsoon System. Holocene, 23, 1915-1920. https://doi.org/10.1177/0959683613505336

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Lawrence Edwards, R., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffman, D.L., Hogg, A.G.,Reimer, R.W., Richards, D.A., Marian Scott, E., Southon, J.R., Staff, R.A., Turney, C.S.M. and van der Plicht, J. 2013. Initial 13 and marine 13 radiocarbon age calibrationcurves 0-50,000 years CAL BP. Radiocarbon, 55 (4), 1869-1887. https://doi.org/10.2458/azu_js_rc.55.16947

Richardson, P.L. and Reverdin, G. 1987. Seasonal cycle of velocity in the Atlantic North Equatorial Countercurrent as measured by surface drifters, current meters, and ship drifts. Journal of Geophysical Research, 92. https://doi.org/10.1029/JC092iC04p03691

Rogers, G. and Hawkesworth, C.J. 1989. A geochemical traverse across the North ChileanAndes: evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters, 91, 271-285. https://doi.org/10.1016/0012-821X(89)90003-4

Shao, L., Yuan, S., Li, C., Kang, C., Zhu, W., Liu, Y. and Wang, J. 2015. Changing provenance of late Cenozoic sediments in the Jianghan Basin. Geoscience Frontiers 6 (4), 605-615. https://doi.org/10.1016/j.gsf.2014.04.010

Stuiver, M. and Reimer, P.J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215-230. https://doi.org/10.1017/S0033822200013904

Tassinari, C.C.G.and Macambira, M.J.B. Geochronological provinces of the Amazonian Craton. Episodes, 22 (3), 174-182. https://doi.org/10.18814/epiiugs/1999/v22i3/004

van Schmus, W.R., de Brito Neves, B.B., Hackspacher, P. and¡ Babinski. M. 1995. U/Pb and Sm/Nd geochronologic studies of the eastern Borborema Province, Northeastern Brazil: initial conclusions. Journal of South American Earth Sciences, 8, 267-288. https://doi.org/10.1016/0895-9811(95)00013-6

van Schmus, W.R., Kozuch, M. and de Brito Neves, B.B. 2011. Precambrian history of the Zona Transversal of the Borborema Province, NE Brazil: Insights from Sm-Nd and U-Pb geochronology. Journal of South American Earth Sciences, 31, 227-252. https://doi.org/10.1016/j.jsames.2011.02.010

Viers, J., Roddaz, M., Filizola, N., Guyot, J.-L., Sondag, F., Brunet, P., Zouiten, C., Boucayrand, C., Martin, F. and Bonaventura, G.R. 2008. Seasonal and provenance controls on Nd-Sr isotopic compositions of Amazon rivers suspended sediments and implications for Nd and Sr fluxes exported to the Atlantic Ocean. Earth and Planetary Science Letters, 274, 511-523. https://doi.org/10.1016/j.epsl.2008.08.011

Vinther, B.M., H.B. Clausen, D.A. Fisher, R.M. Koerner, S.J. Johnsen, K.K. Andersen, D. Dahl-Jensen, S.O. Rasmussen, J.P. Steffensen, and A.M. Svensson. 2008. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology. Journal of Geophysical Research, 113, D08115, https://doi.org/10.1029/2007JD009143

Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., and Shen, C.-C. 2004. Wet periods in northeastern Brazil over the past 210 Kyr linked to distant climate anomalies. Nature, 432, 740-743. https://doi.org/10.1038/nature03067 PMid:15592409

Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang,Y., Kong, X., and Solheid, M. 2007. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters, 34, L23701. https://doi.org/10.1029/2007GL031149

Weldeab, S., Emeis, K.-C., HemLeben, C. and Siebel, W. 2002. Provenance of lithogenic surface sediments and pathways of riverine suspended matter in the Eastern Mediterranean Sea: evidence from 143Nd/144Nd and 87Sr/86Sr ratios. Chemical Geology, 186, 139-149. https://doi.org/10.1016/S0009-2541(01)00415-6

Yang, S.Y., Wei, G.J., Xia, X.P. Sun, M. and Tang, M. 2007. Provenance study of the late Cenozoic sediments in the Changjiang delta: REE and Nd isotopic constraints. Quaternary Sciences, 27, 339-346.

Zhang, Y., Chiessi, C.M., Mulitza, S., Zabel, M., Trindade, R.I.F., Hollanda, M.H.B.M., Dantas, E.L. Govin, A., Tiedemann, R. and Wefer, G. 2015. Origin of increased terrigenous supply to the NE South American continental margin during Heinrich Stadial 1 and the Younger Dryas. Earth and Planetary Science Letters, 432, 493-500. Department of Geosciences University of Arizona, 28/02/2017, http://www.geo.arizona.edu. https://doi.org/10.1016/j.epsl.2015.09.054

Downloads

Published

2018-12-30

How to Cite

Ruiz, I., & Pena, L. (2018). Neodymium and Strontium isotopes as source indicators for terrigenous sediments deposited in NE Brazil. Boletín Geológico Y Minero, 129(4), 633–646. https://doi.org/10.21701/bolgeomin.129.4.003

Issue

Section

Articles