Relict cataclasis in the high-pressure marbles of the Samaná complex, Northeast Dominican Republic

Authors

  • I. Rodríguez Departamento de Geología, Universidad de Oviedo
  • F. J. Fernández Departamento de Geología, Universidad de Oviedo
  • J. Escuder-Viruete Instituto Geológico y Minero de España
  • A. Pérez-Estaún Instituto de Ciencias de la Tierra “Jaume Almera” CSIC

DOI:

https://doi.org/10.21701/bolgeomin.128.3.003

Keywords:

cataclasis, deformation mechanisms, fractal dimension, high-pressure metamorphism

Abstract


Cold-cathodoluminescence (CCL) images have unmasked relict cataclastic microstructures in marbles and calc-schists of the higher-pressure units of the Samaná complex. The grain size of the cataclastic microstructures always has a self-similar distribution of power law type, with a slope break at log(ri)=1.7. The large grain size fraction (1.7<log(ri)<2.4) is characterized by fractal dimension D2=2.43 in the calcite-microstructures of the Punta Balandra unit and D2=2.72 in the Santa Bárbara unit. Both D-values are within the usual range of the carbonate-cataclasites and they are significant with the linear correlation of R2=0.95 and 0.93, respectively. However, the finer grain size fraction (0.9<log(ri)<1.7) is characterized by D1<1 and this grain-size distribution is beyond the fractal-range for pure cataclastic-fabric, even though it has better fit power-law distribution.

Microstructures such as dissolution-surfaces, interpenetrated particles, and the higher roundness and lower irregularity of the boundary grain from the fine fraction indicate that dissolution-precipitation creep was dominant after cataclasis. Clast size and stress reduction after cataclasis and the high fluid pressure provided favorable conditions to allow dissolution-precipitation creep. Transition from cataclastic flow to dissolution-precipitation creep was scale-dependent and it tended to homogenize and reduce the finer grain size fraction. Consequently, the slope break between D1 and D2 is interpreted as a record in the grain size distribution produced by a change in the dominant deformation mechanism.

Downloads

Download data is not yet available.

References

Adams, F. D. and Nicolson, J. T., 1900. An Experimental Investigation into the Flow of Marble. Proceedings of the Royal Society of London 67, 228-234. https://doi.org/10.1098/rspl.1900.0024

Austin, N.J. and Evans, B., 2007. Paleowattmeters: a scaling relation for dynamically recrystallized grain size. Geology 35, 343-346. https://doi.org/10.1130/G23244A.1

Billi, A., 2007. On the extent of size range and power law scaling for particles of natural carbonate fault cores. Journal of Structural Geology 29, 1512-1521. https://doi.org/10.1016/j.jsg.2007.06.007

Billi, A., 2010. Microtectonics of low-P low-T carbonate fault rocks. Journal of Structural Geology 32, 1392-1402. https://doi.org/10.1016/j.jsg.2009.05.007

Billi, A., Salvini, F. and Storti, F., 2003a. The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structural Geology 25, 1779-1794. https://doi.org/10.1016/S0191-8141(03)00037-3

Billi, A., Storti, F. and Salvini, F., 2003b. Particle size distributions of fault rocks and fault transpression: are they related? Terra Nova 15, 61-66. https://doi.org/10.1046/j.1365-3121.2003.00462.x

Billi, A. and Storti, F., 2004. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone. Tectonophysics 384, 115-128. https://doi.org/10.1016/j.tecto.2004.03.015

Blenkinsop, T. G., 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics 136, 59-86. https://doi.org/10.1007/BF00878888

Burkhard, M., 1993. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. Journal of Structural Geology 15, 351-368. https://doi.org/10.1016/0191-8141(93)90132-T

Catlos, E. J. and Sorensen, S.S., 2003. Phengite-based chronology of K- and Ba-rich fluid flow in two paleosubduction zones. Science 299, 92-95. https://doi.org/10.1126/science.1076977

Draper, G., Mann, P. and Lewis, J.F., 1994. Hispaniola. En: Donovan S.K. y Jackson, T.A. (ed.), Caribbean Geology: An Introduction. University of the West Indies Publishers Association, Kingston, Jamaica, 129-150.

Elliott, D., 1973. Diffusion flow laws in metamorphic rocks. Geological Society of America Bulletin 84, 2645-2664. https://doi.org/10.1130/0016-7606(1973)84<2645:DFLIMR>2.0.CO;2

Epstein, B., 1947. The mathematical description of certain breakage mechanisms leading to the logarithmic normal distribution. Journal of the Franklin Institute 244, 471-477. https://doi.org/10.1016/0016-0032(47)90465-1

Escuder Viruete, J., 2004. Petrología y Geoquímica de Rocas Ígneas y Metamórficas del Proyecto K (Sysmin): Hojas de Dajabón, Martín García, Loma de Cabrera, Santiago Rodríguez, Monción, Restauración, Jicomé, Bánica, Arroyo Limón y Lamedero. Informe Complementario al Mapa Geológico de la República Dominicana a E. 1:50.000. IGME-BRGM-INYPSA, Santo Domingo, 130 pp.

Escuder-Viruete, J. and Pérez-Estaún, A., 2006. Subduction-related P-T path for eclogites and garnet glaucophanites from the Samaná Peninsula basement complex, northern Hispaniola. International Journal of Earth Sciences 95 (6), 995-1017. https://doi.org/10.1007/s00531-006-0079-5

Escuder-Viruete, J., 2008. Mapa Geológico de la República Dominicana E. 1:50.000, Santa Bárbara de Samaná (6373-IV). Dirección General Minería, Santo Domingo, 197 pp.

Escuder-Viruete, J., Pérez-Estaún, A., Booth-Rea, G. and Valverde-Vaquero, P., 2011a. Tectonometamorphic evolution of the Samaná complex, northern Hispaniola: Implications for the burial and exhumation of high-pressure rocks in a collisional accretionary wedge. Lithos 125, 190-210. https://doi.org/10.1016/j.lithos.2011.02.006

Escuder-Viruete J., Pérez-Estaún A., Gabites J. and Suárez-Rodríguez A., 2011b. Structural development of a high-pressure collisional accretionary wedge: The Samaná complex, Northern Hispaniola. Journal of Structural Geology 33, 928-950. https://doi.org/10.1016/j.jsg.2011.02.006

Escuder-Viruete, J. and Pérez-Estaún, A., 2013. Contrasting exhumation P-T paths followed by high-P rocks in the northern Caribbean subduction-accretionary complex: Insights from the structural geology, microtextures and equilibrium assemblage diagrams. Lithos 160-161, 177-144. https://doi.org/10.1016/j.lithos.2012.11.028

Fernández, F.J., Menéndez-Duarte, R., Aller, J. and Bastida, F., 2005. Application of geographical information system to shape-fabric analysis. In: Micorsturctural evolution and physical properties in high-strain zones (I. Burlini and Bruhn eds.) Geological Society of London Special Publications 245, 409-420. https://doi.org/10.1144/GSL.SP.2005.245.01.20

Fernández, F.J., Rutter, E.H., Prior, D. y García-Cuevas, C., 2011. Análisis e interpretación de fábricas tectónicas en rocas carbonatadas cálcicas. Revista de la Sociedad Geológica de España 24 (1-2), 9-30.

Fernández, F.J, Rodríguez, I., Escuder-Viruete, J., Pérez-Estaún, A., Mariani, E. y Prior D., 2015. Inversión Mecánica durante la exhumación de los Mármoles de alta presión, complejo de Samaná, Norte de la Española. Boletín Geológico y Minero, XX, XX-XX.

Ferrill, D.A., Morris, A.P., Evans, M.A., Burkhard, M., Groshong, R.H. and Onasch C.M., 2004. Calcite twin morphology: a low-temperature deformation geothermometer. Journal of Structural Geology 26, 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028

Gonçalves, Ph., Guillot, S., Lardeaux, J.M., Nicollet, C. and Mercier de Lépinay, B., 2000. Thrusting and sinistral wrenching in a pre-Eocene HP-LT Caribbean accretionary wedge (Samaná Peninsula, Dominican Republic). Geodinamica Acta 13, 119-132. https://doi.org/10.1016/S0985-3111(00)00116-9

Griggs, D. T., Turner, F. J. and Heard, H., 1960. Deformation of rocks at 500º to 800ºC. In: Rock Deformation (Griggs, D. and Handin, J. eds.). Geological Society of America Memoirs 79, 34-104. https://doi.org/10.1130/MEM79-p39

Hermann, J., Spandler, C., Hack, A. and Korsakov, A.V., 2006. Aqueous fluids and hydrous melts in high-pressure and ultrahigh-pressure rocks: implications for element transfer in subduction zones. Lithos 92, 399-441. https://doi.org/10.1016/j.lithos.2006.03.055

Isacks, B., Oliver, J. and Sykes, L. R., 1968. Seismology and the new global tectonics. Journal of Geophysical Research, 73 (18), 5855-5899. https://doi.org/10.1029/JB073i018p05855

Jamtveit, B., Austrheim, H. and Malthe-Sorenssen, A., 2000. Accelerated hydration of the Earth's deep crust induced by stress perturbations. Nature 408, 75-78. https://doi.org/10.1038/35040537

Joyce, J., 1991. Blueschist metamorphism and deformation on the Samaná Peninsula: a record of subduction and collision in the Greater Antilles. En: Mann P., Draper G. y Lewis J. (ed.), Tectonic Development of the North America-Caribbean Plate Boundary Zone in Hispaniola: Geological Society America Special Paper 262, 47-75. https://doi.org/10.1130/SPE262-p47

Keulen, N., Heilbronner, R., Stünitz, H., Boullier, AM. and Ito, H., 2007. Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoids. Journal and Structural Geology 29, 1282-1300. https://doi.org/10.1016/j.jsg.2007.04.003

Long, J.V.P. and Agrell S.O., 1965. The cathodoluminescence of minerals in thin section. Mineralogical Magazine 34, 318-326. https://doi.org/10.1180/minmag.1965.034.268.27

Mancktelow, N., 1995. Non lithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks. Journal of Geophysical Research 100, 571-583. https://doi.org/10.1029/94JB02158

Marshall, J.D., 1988. Cathodoluminescence of geological materials. Unwin Hyman, 146 pp.

Morgan, J.K., Cladouhos, T.T., Scharer, K.M., Cowan, D.S. and Vrojlik, P., 1997. Fractal particle size distributions in Death Valley fault zones: Controls on mechanics and kinematics of fault rocks, Geological Society of America, Abstract with Programs 29.

Paterson, M. S., 1990. Superplasticity in geological materials. Materials Research Society Symposium Proceedings 196, 303 - 312. https://doi.org/10.1557/PROC-196-303

Pérez-Estaún, A., Hernaiz, P. P., Lopera, E., Joubert, M. y grupo SISMYN (Escuder-Viruete, J., Diaz, A., Monthel, J., García-Senz, J., Ubrien, P., Contreras,F., Bernárdez, E., Stein, G., Deschamps, I., García-Lobón, J. L. y Ayala, C., 2007. Geología de la República Dominicana: de la construcción de arco-isla a la colisión arco-continente. Boletín Geológico y Minero 118, 157-174.

Petrini, K. and Podladchikov, Y., 2000. Lithospheric pressure-depth relationship in compressive regions of thickened crust. Journal of Metamorphic Geology 18, 67-77. https://doi.org/10.1046/j.1525-1314.2000.00240.x

Rutter, E. H., 1976. The kinetics of rock deformation by pressure solution. In: Philosophical Transactions of the Royal Society of London 283 (A), 203-219. https://doi.org/10.1098/rsta.1976.0079

Rutter, E. H., 1983. Pressure solution in nature, theory and experiment. Journal of the Geological Society 140, 725-740. https://doi.org/10.1144/gsjgs.140.5.0725

Rutter, E.H., 1995. Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara marble. Journal of Geophysical Research 100(B12), 24651-24663. https://doi.org/10.1029/95JB02500

Rutter, E. H. and Brodie, K. H., 1992. Rheology of the lower crust. In Continental Lower Crust, ed. Fountain, D. M., Arculus, R. and Kay, R. W. Amsterdam: Elsevier, 201-267.

Sommer, S.E., 1972. Cathodoluminescence of carbonates, 1 Characterization of cathodoluminescence from carbonate solid solutions. Chemical Geology 9, 257-273. https://doi.org/10.1016/0009-2541(72)90064-2

Spiers, C. J., 1982. The Development of Deformation Textures in Calcite Rocks. Ph.D. thesis, Imperial College of Science and Technology, London, 251pp.

Storti, F., Billi, A. and Salvini, F., 2003. Particle size distribution in natural carbonate fault rocks: insights for non-self-similar cataclasis. Earth and Planetary Science Letters 206, 173-186. https://doi.org/10.1016/S0012-821X(02)01077-4

Turcotte, D.L., 1986. Fractals and Fragmentation. Journal of Geophysical Research 91(B2), 1921-1926. https://doi.org/10.1029/JB091iB02p01921

Turner, F. J., T Griggs, D. and Heard, H., 1954. Experimental deformation of calcite crystals. Geological Society of America Bulletin 65, 883-934. https://doi.org/10.1130/0016-7606(1954)65[883:EDOCC]2.0.CO;2

Wassmann, S. and Stöckhert, B., 2013. Rheology of the plate interface-Dissolution precipitation creep in high pressure metamorphic rocks. Tectonophysics 608, 1-29. https://doi.org/10.1016/j.tecto.2013.09.030

Zhang, Z.M., Shen, K., Sun, W.D., Liu, Y.S., Liou, J.D., Shi, C. and Wang, J.L., 2008. Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion in UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta 72, 3200-3228. https://doi.org/10.1016/j.gca.2008.04.014

Downloads

Published

2017-09-30

How to Cite

Rodríguez, I., Fernández, F. J., Escuder-Viruete, J., & Pérez-Estaún, A. (2017). Relict cataclasis in the high-pressure marbles of the Samaná complex, Northeast Dominican Republic. Boletín Geológico Y Minero, 128(3), 569–586. https://doi.org/10.21701/bolgeomin.128.3.003

Issue

Section

Articles

Funding data

Ministerio de Ciencia e Innovación
Grant numbers CGL2010-14890;CGL2011-23628