Monitoring the hourly actual evapotranspiration through the energy balance and a weighing lysimeter

Authors

  • Adán Matías Gabriel Faramiñán Instituto de Hidrología de Llanuras. CIC-CONICET-UNCPBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Facundo Carmona Instituto de Hidrología de Llanuras. CIC-CONICET-UNCPBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • Raúl Eduardo Rivas Instituto de Hidrología de Llanuras. CIC-CONICET-UNCPBA - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA)
  • María Florencia Degano Instituto de Hidrología de Llanuras. CIC-CONICET-UNCPBA - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA)
  • Paula Olivera Rodríguez Instituto de Hidrología de Llanuras. CIC-CONICET-UNCPBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

DOI:

https://doi.org/10.21701/bolgeomin.132.1-2.005

Keywords:

energy balance, lysimeter, plains area, soil moisture

Abstract


By having sufficient knowledge about evapotranspiration in space and time, it is possible to manage and plan the water management of a basin. Evapotranspiration can be obtained indirectly at a local scale through information recorded in agrometeorological stations, or regionally with the use of satellite data. In order to have reliable models, it is very important to validate the information generated with direct measures of evapotranspiration.Therefore, direct measurements of evapotranspiration in clay secano-soils covered by grasses and the use of the data generated for the validation of indirect measurements are presented in this study. To achieve this, hourly data from an energy balance station and direct measurements of a weighing lysimeter were used to study the water loss during two experimental campaigns carried out in Tandil (Argentina), in the months February-March and September 2017. The comparison of the methods was made for different moisture conditions of the soil. The energy balance model estimates approximate values of actual evapotranspiration for maximum values of soil moisture (0.01-0.15 mm hour-1), showing greater differences (0.1-0.35 mm hour-1) when the soil moisture tends to minimum values. However, it was demonstrated that a simple one-level model to determine the latter variable is applicable for areas with reference coverage, allowing simplifications in aerodynamic and crop resistance measurements (Allen et al. 1998). This contribution provides necessary information for the validation of satellite models applied to plains areas, where evapotranspiration is a term of great importance.

Downloads

Download data is not yet available.

References

Aboukhaled, A., Alfaro, A., & Smith, M. 1982. Lysimeters. FAO Irrigation and Drainage paper Nº39. Roma.

Aliaga, V., Ferrelli, F., Piccolo, M. C. 2017. Regionalization of climate over the Argentine Pampas. International journal of climatology. Published online in Wiley Online Library. 37 (S1), 1237-1247. https://doi.org/10.1002/joc.5079

Allen, R. G., Pereira, L. S., Raes, D., Smith, M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage paper Nº56. Roma.

Allen, R. G., Pereira, L. S., Howell, T., Jensen, M. E. 2011, "Evapotranspiration information reporting: I. Factors governing measurement accuracy". Agricultural Water Management 98, 899-920. https://doi.org/10.1016/j.agwat.2010.12.015

Allen, R. G., Pereira, L. S., Howell, T., Jensen, M. E. 2011. "Evapotranspiration information reporting: II. Recommended documentation". Agricultural Water Management 98, 921-929. https://doi.org/10.1016/j.agwat.2010.12.016

Brutsaert, W. 2005. Hydrology, an Introduction. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511808470 PMCid:PMC3525270

Carmona, F., Rivas, R., Ocampo, D., Schirmbeck, J., Holzman, M. 2011. Sensores para la medición y validación de variables hidrológicas a escalas local y regional a partir del balance de energía. Aqua-LAC. 3 (1), 26 - 36. https://doi.org/10.29104/phi-aqualac/2011-v3-1-04

Carmona, F., Orte, P.F., Rivas, R., Wolfram, E., Kruse, E. 2018. Development and Analysis of a New Solar Radiation Atlas for Argentina from Ground-Based Measurements and CERES_SYN1deg data. Egyptian Journal of Remote Sensing and Space Science. Volume 21 (3), 211-217. https://doi.org/10.1016/j.ejrs.2017.11.003

Chow, V. T. 1994. Hidrología aplicada. McGraw-Hill ISBN: 958-600-171-7.

Dietrich, O., Fahle, M., Steidl, J. 2019. The Role of the Unsaturated Zone for Rainwater Retention and Runoff at a Drained Wetland Site. Water. 11 (7), 1404. https://doi.org/10.3390/w11071404

Dormaar, J. F., Chanasyk, D. S. 1995. Effect of native prairie, crested wheatgrass (Agropyron cristatum (L.) Gaertn) and Russian wildrye (Elymus junceus Fisch.) on soil chemical properties. J. Range Manag., vol 48 (3), 258-263. https://doi.org/10.2307/4002430

Fahle, M., Dietrich, O. 2014. Estimation of evapotranspiration using diurnal groundwater level fluctuations: Comparison of different approaches with groundwater lysimeter data, Water Resour. Res., 50, 273- 286. https://doi.org/10.1002/2013WR014472

Faramiñán, A., Carmona, F., Rivas, R., Bayala, M. 2017. Medida directa de la evapotranspiración por medio de un lisímetro de pesada digital. XXVIII Reunión científica de la Asociación de Astrónomos, Geofísicos y Geodestas (AAGG), La plata, Argentina, 31.

Hannes, M., Wollschläger, U., Schrader, F., Durner, W., Gebler, S., Pütz, T., Fank, J., von Unold, G., and Vogel, H.-J. 2015. A comprehensive filtering scheme for high-resolution estimation of the water balance components from high-precision lysimeters, Hydrol. Earth Syst. Sci., 19, 3405-3418. https://doi.org/10.5194/hess-19-3405-2015

Hoffmann, M., Schwartengräber, R., Wessolek, G., Peters, A. 2016. Comparison of simple rain gauge measurements with precision lysimeter data. Atmospheric Research 174 175, 120-123. https://doi.org/10.1016/j.atmosres.2016.01.016

Holzman, M., Rivas, R., Piccolo, M. C. 2014. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation. 28, 181-192 https://doi.org/10.1016/j.jag.2013.12.006

Ibáñez Plana, M. 1998. Estimación de la evapotranspiración regional a partir de la Razón de Bowen radiativa. Tesis doctoral, Universitat de València, Valencia, España.

Ma, Z., Wang, W., Zhang, Z., Brunner, P., Wang, Z., Chen, L., Zhao, M., Gong, 2019. Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China. Hydrogeol Journal. https://doi.org/10.1007/s10040-019-02012-0

Ocampo, D. 2013. Estimación de la fracción evaporativa a partir de registros de humedad de suelo y un lisímetro de pesada. Encuentro del "International Center For Earth Sciences" - E-ICES 8E-ICES8.

Olías, M., Cruz San Julián, J.J., Benavente, J. Contribución de datos lisimétricos a la evaluación de la Recarga al Acuífero Almonte-Marismas. Geogaceta, 33, 107-110.

Parisi, S., Mariani, L., Cola, G., Maggiore, T. 2009. Mini-Lysimeters evapotranspiration measurments on suburban enviroment. Italian Journal of Agrometeorology, 3, 13-16.

Pereira, A. R. 2004. The Priestley-Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agricultural and Forest Meteorology 125, 305-313. https://doi.org/10.1016/j.agrformet.2004.04.002

Picard, A., Davis, R. S., Gläser, M., Fujii, K. 2008. Revised formula for the density of moist air (CIPM-2007). Metrología, 45, 149. https://doi.org/10.1088/0026-1394/45/2/004

Rivas, R., Ocampo, D. 2009. Comportamiento del balance de energía en un cultivo de Avena sativa L.¡ Estudios en la Zona no saturada del Suelo, Vol IX O. Silva et al. Barcelona.

Schirmbeck, Rivas, R. 2007. Comportamiento de los términos del balance de energía en una pastura. TELEDETECION, Hacia un mejor entendimiento de la dinámica global y regional. Martin ISBN: 978-987-543-126-3.

Schrader, F., Durner, W., Fankb, J., Gebler, S., Pützc, T., Hannesd, M., Wollschläger, U. 2013. Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Four Decades of Progress in Monitoring and Modeling of Processes in the Soil-PlantAtmosphere System: Applications and Challenges. Procedia Environmental Sciences 19, 543-552 https://doi.org/10.1016/j.proenv.2013.06.061

Schwaerzel, K., Bohl, H. P. 2003. An easily installable groundwater lysimeter to determine water balance components and hydraulic properties of peat soils. Hydrology and Earth System Sciences, 7(1), 23-32 https://doi.org/10.5194/hess-7-23-2003

Silicani, M. 2014. Diseño, construcción y operación de un lisímetro de bajo costo. Tesis de especialización, Universidad Nacional de Cuyo, Mendoza, Argentina.

Vásquez, V., Thomsen, A., Iversen, B. V., Jensen, R., Ringgaard, R., Schelde, K. 2015. Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model, Hydrological Sciences Journal, 60 (9), 1520-1537 https://doi.org/10.1080/02626667.2014.904964

Weinzettel, P., Usunoff E. 2001. Cálculo de la recarga mediante la aplicación de la ecuación de Darcy en la zona no saturada. In Las caras del agua subterránea, Tomo II, Medina A, Carrera J (eds). Barcelona, España; 225-261.

Downloads

Published

2021-06-30

How to Cite

Gabriel Faramiñán, A. M., Carmona, F., Rivas, R. E., Degano, M. F., & Olivera Rodríguez, P. (2021). Monitoring the hourly actual evapotranspiration through the energy balance and a weighing lysimeter. Boletín Geológico Y Minero, 132(1-2), 47–56. https://doi.org/10.21701/bolgeomin.132.1-2.005

Issue

Section

Articles

Funding data

Most read articles by the same author(s)