Distribution maps of stable isotopes in the Pampean aquifer in the Southeast of Buenos Aires province (Argentina)

Authors

  • Orlando Mauricio Quiroz Londoño Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP) - Instituto de Geología de Costas y del Cuaternario (UNMdP-CIC prov. Bs. As.). Universidad Nacional de Mar del Plata. IGCyC-CIC.
  • Daniel Emilio Martínez Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP) - Instituto de Geología de Costas y del Cuaternario (UNMdP-CIC prov. Bs. As.). Universidad Nacional de Mar del Plata. IGCyC-CIC

DOI:

https://doi.org/10.21701/bolgeomin.132.1-2.018

Keywords:

Acuífero, Acuífero Pampeano, Geoestadística, Isótopos Estables

Abstract


The relatively recently developed isotopic maps (isoscapes) are used to visualize large-scale and spatiotemporal distributions of stable isotope ratios in various environmental matrices or reservoirs such as rainfall, tap water, oceans, rocks, plants and animals. In this context the International Atomic Energy Agency (IAEA) financed the project “Groundwater recharge processes inferred from isoscapes in the Buenos Aires Province, Argentina”. In the development of this research project, groundwater isoscapes in the southeast of Buenos Aires province were carried out, considering 787 groundwater sampling sites. In the generation of these maps, geostatistical techniques have been used in order to establish patterns of spatial self-correlation. The models obtained were tested using leave-one-out cross-validation. The results obtained are being integrated into the conceptual hydrogeological model of the region, generating tools that contribute to the management of surface and ground water resources. Additionally, it is expected that the results of this study will serve as an input in different research areas that use water traceability to study different environmental processes in the region.

Downloads

Download data is not yet available.

References

Bocanegra, E., Londono, O. Q., Martínez, D., & Romanelli, A. (2013). Quantification of the water balance and hydrogeological processes of groundwater- lake interactions in the Pampa Plain, Argentina. Environmental Earth Sciences, 68(8), 2347-2357. https://doi.org/10.1007/s12665-012-1916-4

Bowen, G. J., & West, J. B. (2008). Isotope landscapes for terrestrial migration research. Terrestrial ecology, 2, 79-105. https://doi.org/10.1016/S1936-7961(07)00004-8

Carol, E., Braga, F., Da Lio, C., Kruse, E., & Tosi, L. (2015). Environmental isotopes applied to the evaluation and quantification of evaporation processes in wetlands: a case study in the Ajó Coastal Plain wetland, Argentina. Environmental Earth Sciences, 74(7), 5839-5847. https://doi.org/10.1007/s12665-015-4601-6

Carol, E. S., Kruse, E. E., Laurencena, P. C., Rojo, A., & Deluchi, M. H. (2012). Ionic exchange in groundwater hydrochemical evolution. Study case: the drainage basin of El Pescado creek (Buenos Aires province, Argentina). Environmental Earth Sciences, 65(2), 421-428. https://doi.org/10.1007/s12665-011-1318-z

Carretero, S. C., Dapeña, C., & Kruse, E. E. (2013). Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer on the northeastern coast of the province of Buenos Aires, Argentina. Isotopes in environmental and health studies, 49(3), 399-419. https://doi.org/10.1080/10256016.2013.776557 PMid:23713885

Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology: CRC press.

Coleman, M. L., Shepherd, T. J., Durham, J. J., Rouse, J. E., & Moore, G. R. (1982). Reduction of water with zinc for hydrogen isotope analysis. Analytical chemistry, 54(6), 993-995. https://doi.org/10.1021/ac00243a035

Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703. https://doi.org/10.1126/science.133.3465.1702 PMid:17814749

Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x

Darling, W., Bath, A., & Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 2. Surface waters and groundwater. Hydrology and Earth System Sciences Discussions, 7(2), 183-195. https://doi.org/10.5194/hess-7-163-2003

ESRI. (2006). ArcGIS 9.2: Environmental Systems Research Institute Inc Redlands, California.

Froehlich, K., Gibson, J., & Aggarwal, P. (2002). Deuterium excess in precipitation and its climatological significance. Viena, Austria: IAEA.

Galindo, G., Sainato, C., Dapeña, C., Fernández-Turiel, J., Gimeno, D., Pomposiello, M., & Panarello, H. (2007). Surface and groundwater quality in the northeastern region of Buenos Aires Province, Argentina. Journal of South American Earth Sciences, 23(4), 336-345. https://doi.org/10.1016/j.jsames.2007.02.001

Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24(1), 225-262. https://doi.org/10.1146/annurev.earth.24.1.225

Gibson, J. J., Reid, R., & Spence, C. (1998). A six‐year isotopic record of lake evaporation at a mine site in the Canadian subarctic: results and validation. Hydrological processes, 12(10‐11), 1779-1792. https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1779::AID-HYP694>3.0.CO;2-7

Gonfiantini, R. (1978). Standards for stable isotope measurements in natural compounds. Nature, 271(5645), 534. https://doi.org/10.1038/271534a0

IAEA. (1992). Statistical treatment of data on environmental isotopes in precipitation: Internat. Atomic Energy Agency.

IAEA, W., & WMO, W. (2006). Global Network of Isotopes in Precipitation. The GNIP database. Jiménez-Martínez, J., & Custodio, E. (2010). El exceso de deuterio en la lluvia y en la recarga a los acuíferos en el área circum-mediterránea y en la costa mediterránea española. Boletín geológico y minero, 119(1), 21-32.

Kendall, C., & McDonnell, J. J. (2012). Isotope tracers in catchment hydrology: Elsevier.

Kortelainen, N. M., & Karhu, J. A. (2004). Regional and seasonal trends in the oxygen and hydrogen isotope ratios of Finnish groundwaters: a key for mean annual precipitation. Journal of Hydrology, 285(1), 143-157. https://doi.org/10.1016/j.jhydrol.2003.08.014

Kruse, E., Carol, E., Deluchi, M., Laurencena, P., & Rojo, A. (2010). Hidroquímica subterránea en un sector de la zona deprimida del Salado, Prov. de Bs As.

Articulo I Congreso de Internacional de Hidrología de Llanuras Azul, Buenos Aires.

Martínez, D., Fourré, E., Londoño, O. Q., Jean-Baptiste, P., Galli, M. G., Dapoigny, A., & Grondona, S. (2016). Residence time distribution in a large unconfined- semiconfined aquifer in the Argentine Pampas using 3. Hydrogeology Journal, 24(5), 1107-1120. https://doi.org/10.1007/s10040-016-1378-y

Martínez, D., Quiroz Londoño, O., Dapeña, C., Massone, H., Ferrante, A., & Bocanegra, E. (2007). Aportes al modelo hidrogeológico conceptual de la cuenca del río Quequén Grande, provincia de Buenos Aires. Articulo V Congreso Argentino de Hidrogeología. 16-19

Martínez, D., Quiroz Londoño, O., & Grondona, S. (2014). Variabilidad temporal y en profundidad de isótopos estables en muestras someras de agua subterránea. Articulo presentado en III Reunión Argentina de Geoquímica de la Superficie, Mar del Plata.

Martínez, D., Quiroz Londoño, O., Solomon, D., Dapeña, C., Massone, H., Benavente, M., & Panarello, H. (2017). Hydrogeochemistry, Isotopic Composition and Water Age in the Hydrologic System of a Large Catchment within a Plain Humid Environment (Argentine Pampas): Quequén Grande River, Argentina. River Research and Applications, 33(3), 438-449. https://doi.org/10.1002/rra.3072

Martínez, D., Quiroz, O., Dapeña, C., Glok-Galli, M., Massone, H., & Ferrante, A. (2011). Caracterización isotópica e hidroquímica de las precipitaciones en el sector sur de Tandilia. Articulo VII Congreso Argentino de Hidrogeología y V Seminario Hispano-Latinoamericano Sobre Temas Actuales de la Hidrología Subterránea. Calidad y Contaminación de Agua Subterránea Salta, Actas.369-376.

Merlivat, L., & Jouzel, J. (1979). Global climatic interpretation of the deuterium‐oxygen 18 relationship for precipitation. Journal of Geophysical Research: Oceans, 84(C8), 5029-5033. https://doi.org/10.1029/JC084iC08p05029

Panarello, H., & Parica, C. (1984). Isótopos del oxígeno en hidrogeología e hidrología. Primeros valores en aguas de lluvia de Buenos Aires. Asociación Geológica Argentina, Revista, 39(1-2), 3-11.

Pollice, A., & Jona Lasinio, G. (2008). Two approaches to imputation and adjustment of air quality data from a composite monitoring network. GRASPA WORKING PAPERS, 30.

Quiroz Londoño, O., Martínez, D., Dapeña, C., & Massone, H. (2008a). Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeology Journal, 16(6), 1113-1127. https://doi.org/10.1007/s10040-008-0289-y

Quiroz Londoño, O. M., Martínez, D., Dapeña, C., & Massone, H. (2008b). Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeology Journal, 16(6), 1113-1127. https://doi.org/10.1007/s10040-008-0289-y

Quiroz Londoño, O. M., Martínez, D. E., Massone, H. E., Londoño Ciro, L. A., & Dapeña, C. (2015). Spatial distribution of electrical conductivity and stable isotopes in groundwater in large catchments: a geostatistical approach in the Quequén Grande River catchment, Argentina. Isotopes in environmental and health studies, 51(3), 411-425. https://doi.org/10.1080/10256016.2015.1056740 PMid:26158480

Rindsberger, M., Magaritz, M., Carmi, I., & Gilad, D. (1983). The relation between air mass trajectories and the water isotope composition of rain in the Mediterranean Sea area. Geophysical Research Letters, 10(1), 43-46. https://doi.org/10.1029/GL010i001p00043

Rodrigues Capítulo, L. (2015). Evaluación geohidrológica en la región costera oriental de la provincia de Buenos Aires. Informe Inédito. Tesis doctoral, Facultad de Ciencias Exactas Naturales y Museo, La Plata, Argentina 239.

Romanelli, A., Londoño, O. M. Q., Martínez, D. E., Massone, H. E., & Escalante, A. H. (2014). Hydrogeochemistry and isotope techniques to determine water interactions in groundwater-dependent shallow lakes, Wet Pampa Plain, Argentina. Environmental Earth Sciences, 71(4), 1953-1966. https://doi.org/10.1007/s12665-013-2601-y

Rozanski, K. (1985). Deuterium and oxygen-18 in European groundwaters-links to atmospheric circulation in the past. Chemical Geology: Isotope Geoscience section, 52(3-4), 349-363. https://doi.org/10.1016/0168-9622(85)90045-4

Sala, J. M., & Angelelli, V. (1975). Recursos hídricos (especial mención de las aguas subterráneas). Articulo Relatorio Geología de la Provincia de Buenos Aires. IV Congreso Geológico Argentino. Buenos Aires, Argentina.169

Sánchez‐Murillo, R., & Birkel, C. (2016). Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region. Geophysical Research Letters, 43(10), 5060-5069. https://doi.org/10.1002/2016GL068888

Teruggi, M., & Kilmurray, J. (1975). Tandilia. Articulo Relatorio Geología de la provincia de Buenos Aires, 6 Congreso Geológico Argentino.55-77

Terzer, S., Wassenaar, L., Araguás-Araguás, L., & Aggarwal, P. (2013). Global isoscapes for d18O and d2H in precipitation: improved prediction using regionalized climatic regression models. Hydrology and Earth System Sciences, 17(11), 4713. https://doi.org/10.5194/hess-17-4713-2013

Wassenaar, L. I., Van Wilgenburg, S. L., Larson, K., & Hobson, K. A. (2009). A groundwater isoscape (δD, δ 18 O) for Mexico. Journal of Geochemical Exploration, 102(3), 123-136. https://doi.org/10.1016/j.gexplo.2009.01.001

Zabala, M., Manzano, M., & Vives, L. (2015). The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina. Science of the Total Environment, 518, 168-188. https://doi.org/10.1016/j.scitotenv.2015.02.065 PMid:25747376

Downloads

Published

2021-06-30

How to Cite

Quiroz Londoño, O. M., & Martínez, D. E. (2021). Distribution maps of stable isotopes in the Pampean aquifer in the Southeast of Buenos Aires province (Argentina). Boletín Geológico Y Minero, 132(1-2), 175–184. https://doi.org/10.21701/bolgeomin.132.1-2.018

Issue

Section

Articles