Técnicas de fracturación hidráulica y térmica para la estimulación eficiente en la producción de energía geotérmica no convencional

Autores/as

  • W.G.P. Kumari University of Wollongong
  • P.G. Ranjith Monash University
  • M.S.A. Perera Monash University
  • B. L. Avanthi Isaka Monash University

DOI:

https://doi.org/10.21701/bolgeomin.131.3.006

Palabras clave:

escaneo CT, geotérmica, fracturación hidráulica, permeabilidad, fracturación térmica

Resumen


Los sistemas geotérmicos mejorados o no convencionales (EGSs) se han identificado recientemente como recursos geotérmicos potenciales que se pueden utilizar para extraer el calor atrapado en formaciones geológicas profundas. Sin embargo, debido a la baja porosidad de formación en estos sistemas, se debe crear artificialmente un intercambiador subterráneo de calor para aumentar la permeabilidad del reservorio. En EGSs se han adoptado un número de técnicas de estimulación del reservorio para aumentar su permeabilidad, incluyendo la fracturación hidráulica y la fracturación térmica. El objetivo de este trabajo es proporcionar una comprensión profunda de estas técnicas de estimulación del reservorio basada en nuestro actual trabajo de experimentos en laboratorio. Se ha hecho una revisión exhaustiva de la literatura reciente en dicha temática, y se han llevado a cabo ensayos avanzados de laboratorio para entender las técnicas de fracturación hidráulica y térmica bajo condiciones del reservorio. Se llevaron a cabo experimentos utilizando equipos triaxiales para rocas a altas presiones y altas temperaturas y se realizaron tratamientos de temple por inyección de agua fría en rocas graníticas calentadas a diferentes
temperaturas. También se llevaron a cabo experimentos de flujo continuo sobre rocas graníticas fracturadas e intactas y los resultados se compararon con la producción predicha con estimulación. Se empleó tecnología de escaneo CT para determinar las característica a micro-escala que se derivaban de la estimulación. El trabajo experimental ha revelado que la propagación de trayectorias y aperturas de fracturas hidráulicas y térmicas está controlado por esfuerzos y temperatura in-situ así como la heterogeneidad de la matriz rocosa. Aunque las fracturas inducidad contrubuyen sustancialmente al aumento de la permeabilidad del reservorio, eran igualmente sensitivas a cambios en los esfuerzos y temperatura debido al mayor esfuerzo efectivo y a la expansión volumétrica inducida térmicamente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Blanton, T. L. An experimental study of interaction between hydraulically induced and pre-existing fractures. SPE Unconventional Gas Recovery Symposium, 1982. Society of Petroleum Engineers. https://doi.org/10.2523/10847-MS

Bose, C. C., Gul, A., Fairchild, B., Jones, T. & Barati, R. Nano-proppants for fracture conductivity improvement and fluid loss reduction. SPE Western Regional Meeting, 2015. Society of Petroleum Engineers. https://doi.org/10.2118/174037-MS

Breede, K., Dzebisashvili, K., Liu, X. & Falcone, G. 2013. A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geothermal Energy, 1, 4. https://doi.org/10.1186/2195-9706-1-4

Bunger, A., Jeffrey, R., Kear, J., Zhang, X. & Morgan, M. Experimental investigation of the interaction among closely spaced hydraulic fractures. 45th US Rock Mechanics/ Geomechanics Symposium, 2011. American Rock Mechanics Association. https://doi.org/10.2118/140426-MS

Bunger, A. P., Jeffrey, R. G. & Detournay, E. Application of scaling laws to laboratory-scale hydraulic fractures. Alaska Rocks 2005, The 40th US Symposium on Rock Mechanics (USRMS), 2005. American Rock Mechanics Association.

Chitrala, Y., Moreno, C., Sondergeld, C. & Rai, C. 2013. An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions. Journal of Petroleum Science and Engineering, 108, 151-161. https://doi.org/10.1016/j.petrol.2013.01.002

Deng, J., Lin, C., Yang, Q., Liu, Y., Tao, Z. & Duan, H. 2016. Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling. Computers and Geotechnics, 75, 28-47. https://doi.org/10.1016/j.compgeo.2016.01.018

Dmitriev, A. P. 1972. Physical properties of rocks at high temperatures, National Aeronautics and Space Administration; National Technical Information Service, Springfield, Va.

Dwivedi, R. D., Goel, R. K., Prasad, V. V. R. & Sinha, A. 2008. Thermo-mechanical properties of Indian and other granites. International Journal of Rock Mechanics and Mining Sciences, 45, 303-315. https://doi.org/10.1016/j.ijrmms.2007.05.008

El Rabaa, W. Experimental study of hydraulic fracture geometry initiated from horizontal wells. SPE Annual Technical Conference and Exhibition, 1989. Society of Petroleum Engineers. https://doi.org/10.2118/19720-MS

Fallahzadeh, S., Rasouli, V. & Sarmadivaleh, M. 2015. An investigation of hydraulic fracturing initiation and near-wellbore propagation from perforated boreholes in tight formations. Rock Mechanics and Rock Engineering, 48, 573-584. https://doi.org/10.1007/s00603-014-0595-8

Fan, T.-G. & Zhang, G.-Q. 2014. Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures. Energy, 74, 164-173. https://doi.org/10.1016/j.energy.2014.05.037

Fanning, D. S., Keramidas, V. Z. & El-Desoky, M. A. 1989. Micas. Minerals in soil environments, 551-634. Flores, M., Davies, D., Couples, G. & Palsson, B. Stimulation of geothermal wells: can we afford it? Proceedings World Geothermal Congress, 2005. 1. https://doi.org/10.2136/sssabookser1.2ed.c12

Fredrich, J. T. & Wong, T. F. 1986. Micromechanics of thermally induced cracking in three crustal rocks. Journal of Geophysical Research: Solid Earth, 91, 12743-12764. https://doi.org/10.1029/JB091iB12p12743

Geraud, Y. 1994. Variations of connected porosity and inferred permeability in a thermally cracked granite. Geophysical Research Letters, 21, 979-982. https://doi.org/10.1029/94GL00642

Gischig, V. S. & Preisig, G. Hydro-fracturing versus hydro-shearing: a critical assessment of two distinct reservoir stimulation mechanisms. 13th ISRM International Congress of Rock Mechanics, 2015. International Society for Rock Mechanics.

Greaves, G. N., Greer, A., Lakes, R. & Rouxel, T. 2011. Poisson's ratio and modern materials. Nature Materials, 10, 823-837. https://doi.org/10.1038/nmat3134

Guo, T., Zhang, S., Qu, Z., Zhou, T., Xiao, Y. & Gao, J. 2014. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel, 128, 373-380. https://doi.org/10.1016/j.fuel.2014.03.029

Haimson, B. & Fairhurst, C. 1967. Initiation and extension of hydraulic fractures in rocks. Society of Petroleum Engineers Journal, 7, 310-318. https://doi.org/10.2118/1710-PA

Heard, H. 1989. Thermal stress cracking in granite. Journal of Geophysical Research, 94, 1745-1758. Heuze, F. High-temperature mechanical, physical and thermal properties of granitic rocks-a review. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983. Elsevier, 3-10. https://doi.org/10.1016/0148-9062(83)91609-1

Hogarth, R., Holl, H. & McMahon, A. Flow testing results from Habanero EGS Project. Proceedings Australian Geothermal Energy Conferences, 2013.

Huenges, E. "Enhanced geothermal systems: Review and status of research and development." Geothermal Power Generation. 2016. 743-761. https://doi.org/10.1016/B978-0-08-100337-4.00025-5

Hussain, A., Arif, S. M. & Aslam, M. 2017. Emerging renewable and sustainable energy technologies: State of the art. Renewable and Sustainable Energy Reviews, 71, 12-28. https://doi.org/10.1016/j.rser.2016.12.033

Jung, R., 2013, May. EGS-goodbye or back to the future. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics and Rock Engineering. https://doi.org/10.5772/56458

Kitao, K., Ariki, K., Hatakeyama, K. & Wakita, K. 1990. Well stimulation using cold-water injection experiments in the Sumikawa geothermal field, Akita prefecture, Japan. Geothermal Resource Council Transactions, 14, 1219-1224.

Kumari, W., Ranjith, P., Perera, M., Shao, S., Chen, B., Lashin, A., Al Arifi, N. & Rathnaweera, T. 2017. Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction. Geothermics, 65, 44-59. https://doi.org/10.1016/j.geothermics.2016.07.002

Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., Li, X., Li, L. H., Chen, B. K., Isaka, B. L. A. & Silva, V. R. S. D. 2018. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks. Fuel, 230, 138-154. https://doi.org/10.1016/j.fuel.2018.05.040

Lemmon, E. W., Huber, M. L. & Mclinden, M. O. 2002. NIST reference fluid thermodynamic and transport properties- REFPROP. NIST standard reference database, 23, v7.

Liang, F., Sayed, M., Al-Muntasheri, G. A., Chang, F. F. & Li, L. 2016. A comprehensive review on proppant technologies. Petroleum, 2, 26-39. https://doi.org/10.1016/j.petlm.2015.11.001

Mao, R., Feng, Z., Liu, Z. & Zhao, Y. 2017. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens. Journal of Natural Gas Science and Engineering, 44, 278-286. https://doi.org/10.1016/j.jngse.2017.03.037

Ohno, I. 1995. Temperature variation of elastic properties of alpha quartz up to the alpha beta transition. Journal of Physics of the Earth, 43, 157-169. https://doi.org/10.4294/jpe1952.43.157

Sarmadivaleh, M. 2012. Experimental and numerical study of interaction of a pre-existing natural interface and an induced hydraulic fracture. PhD, Curtin University.

Sarmadivaleh, M., Joodi, B., Nabipour, A. & Rasouli, V. 2013. Steps to conducting a valid hydraulic-fracturing laboratory test. The APPEA Journal, 53, 347-354. https://doi.org/10.1071/AJ12029

Schill, E., Cuenot, N., Genter, A. & Kohl, T. Review of the hydraulic development in the multi-reservoir/multi-well EGS project of Soultz-sous-Forets. Proceedings World Geothermal Congress 2015, 2015. 19-25.

Shao, S. 2015. Coupled Thermo-Hydro-Mechanical (THM) Behaviour of Rock Relevant to the Geothermal Industry (Doctoral dissertation). PhD, Monash University.

Shao, S., Wasantha, P. L. P., Ranjith, P. G. & Chen, B. K. 2014. Effect of cooling rate on the mechanical behavior of heated Strathbogie granite with different grain sizes. International Journal of Rock Mechanics and Mining Sciences, 70, 381-387. https://doi.org/10.1016/j.ijrmms.2014.04.003

Siratovich, P. A., Villeneuve, M. C., Cole, J. W., Kennedy, B. M. & Bégué, F. 2015. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 80, 265-280. https://doi.org/10.1016/j.ijrmms.2015.09.023

Stephens, G. & Voight, B. 1982. Hydraulic fracturing theory for conditions of thermal stress. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 19, 279-284. https://doi.org/10.1016/0148-9062(82)91364-X

Tarasovs, S. and Ghassemi, A., 2011, January. Propagation of a system of cracks under thermal stress. In 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.

Walsh, J. 1965. The effect of cracks in rocks on Poisson's ratio. Journal of Geophysical Research, 70, 5249-5257. https://doi.org/10.1029/JZ070i020p05249

Wanniarachchi, W.A.M., Gamage, R.P., Perera, M.S.A., Rathnaweera, T.D., Gao, M. and Padmanabhan, E., 2017. Investigation of depth and injection pressure effects on breakdown pressure and fracture permeability of shale reservoirs: an experimental study. Applied Sciences, 7(7), p.664. https://doi.org/10.3390/app7070664

Watanabe, K. & Takahashi, H. 1995. Fractal geometry characterization of geothermal reservoir fracture networks. Journal of Geophysical Research: Solid Earth (1978-2012), 100, 521-528. https://doi.org/10.1029/94JB02167

Wong, T.-F. 1982. Effects of temperature and pressure on failure and post-failure behavior of Westerly granite. Mechanics of Materials, 1, 3-17. https://doi.org/10.1016/0167-6636(82)90020-5

Wong, T.-F. & Brace, W. 1979. Thermal expansion of rocks: some measurements at high pressure. Tectonophysics, 57, 95-117. https://doi.org/10.1016/0040-1951(79)90143-4

Xu, X.-L., Gao, F., Shen, X.-M. & Xie, H.-P. 2008. Mechanical characteristics and microcosmic mechanisms of granite under temperature loads. Journal of China University of Mining and Technology, 18, 413-417. https://doi.org/10.1016/S1006-1266(08)60086-3

Yasuhara, H. & Elsworth, D. 2008. Compaction of a rock fracture moderated by competing roles of stress corrosion and pressure solution. Pure and Applied Geophysics, 165, 1289-1306. https://doi.org/10.1007/s00024-008-0356-2

Zhou, C., Wan, Z., Zhang, Y. & Gu, B. 2018. Experimental study on hydraulic fracturing of granite under thermal shock. Geothermics, 71, 146-155. https://doi.org/10.1016/j.geothermics.2017.09.006

Zhou, J., Chen, M., Jin, Y. & Zhang, G.-Q. 2008. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs. International Journal of Rock Mechanics and Mining Sciences, 45, 1143-1152. https://doi.org/10.1016/j.ijrmms.2008.01.001

Zimmermann, G. & Reinicke, A. 2010. Hydraulic stimulation of a deep sandstone reservoir to develop an Enhanced Geothermal System: Laboratory and field experiments. Geothermics, 39, 70-77. https://doi.org/10.1016/j.geothermics.2009.12.003

Zoback, M., Rummel, F., Jung, R. & Raleigh, C. 1977. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14, 49-58. https://doi.org/10.1016/0148-9062(77)90196-6

Descargas

Publicado

2020-09-30

Cómo citar

Kumari, W., Ranjith, P., Perera, M., & Avanthi Isaka, B. L. (2020). Técnicas de fracturación hidráulica y térmica para la estimulación eficiente en la producción de energía geotérmica no convencional. Boletín Geológico Y Minero, 131(3), 423–444. https://doi.org/10.21701/bolgeomin.131.3.006

Número

Sección

Artículos