Detección confirmada de ciclos sedimentarios de forzamiento orbital en el Paleogeno y Jurásico en depth domain, usando Tasas de Hallazgos Falsos y espectros de probabilidad bayesiana
DOI:
https://doi.org/10.21701/bolgeomin.131.2.001Palabras clave:
probabilidad bayesiana, cicloestratigrafía, ration de detección falsa, análisis espectralResumen
D e manera habitual, se ha supuesto que los fondos espectrales de potencia en clicloestratigrafía se ajustan a un modelo autorregresivo de primer orden (AR1). Vaughan et al. (2011, Paleoceanography) señaló que un método de ajuste de fondos espectrales más flexible y sin sesgo, además de ajuste de niveles de confianza para pruebas de frecuencias múltiples, debería ser obligatorio en la búsqueda de picos espectrales significativos en depth domain. Para complacer estos requerimientos, se combinan ajustes Smoothed Window Averaging (Promedio de Ventana Suavizada) para encontrar fondos espectrales con False Discovery Rates (FDR, Tasa de Hallazgos Falsos) para establecer niveles de confianza, y se aplican a series temporales cicloestratigráficas previamente publicadas de siete formaciones oligocenas y jurásicas. De manera adicional, los espectros de probabilidad bayesiana aportan un método alternativo de detección de ciclicidad periódica.
En las siete formaciones hay sub-secciones asociadas a los picos espectrales que exceden el 5% FDR, en cuatro formaciones incluso exceden el 0.01% FDR. Alta probabilidad bayesiana, en las mismas frecuencias de estos picos espectrales de potencia significativos, apoya la inferencia de que se ha detectado ciclicidad periódica. La prevalencia de detección confirmada de ciclicidad periódica entra en conflicto con la afirmación de Vaughan et al. (2011): “casi con total certeza la gran mayoría de las detecciones de ciclos … en la literatura sobre estratigrafía son falsas”. En publicaciones previas, picos espectrales que exceden el nivel estándar del 95% eran considerados significativos, por lo que niveles de confianza muy elevados no fueron publicados. Sin embargo, los ejemplos reanalizados aquí demuestran que series temporales de cicloestratigrafía pre-neogena contienen ciclos periódicos, muy probablemente asociados a forzamiento orbital.
Descargas
Citas
Abdi, H. 2007. The Bonferroni and Šidák corrections for multiple comparisons. In: Salkind, N. (ed.), Encyclopedia of Measurement and Statistics, Sage, 103–107.
Abels, H.A., Van Simaeys, S., Hilgen, F.J., De Man, E. and Vandenberghe, N. 2007. Obliquity-dominated glacio-eustatic sea level change in the early Oligocene: evidence from the shallow marine siliciclastic Rupelian stratotype (Boom Formation, Belgium). Terra Nova, 19, 65-73.
Barnard, P.C. and Cooper, B.S. 1981. Oils and source rocks of the North Sea area. In: Woodland, A.W. (ed.), Petroleum Geology of the Continental Shelf of North-West Europe, Applied Science Publishers, London, pp. 169-175.
Becker, K., Sakai, H., et al. 1987. Sites 677 and 678. Proceedings of the Ocean Drilling Program, Initial Reports, 111, 253-346.
Benjamini, Y. and Hochberg, Y. 1995. Controlling the false-discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, B57, 289-300.
Bernoulli, D. 1964. Zur Geologie des Monte Generoso (Lombardische Alpen). Beiträge zur Geologischen Karte der Schweiz, 118, Kümmerly and Frey, Bern, 134 pp.
Bernoulli, D. and Ulmer, P. 2016. Dropstones in Rosso Ammonitico-facies pelagic sediments of the Southern Alps (southern Switzerland and northern Italy). Swiss Journal of Geosciences, 109, 57-67.
Berra, F., Galli, M.T., Reghellin, F., Torricelli, S. and Fantoni, R. 2009. Stratigraphic evolution of the Triassic-Jurassic succession in the western Southern Alps (Italy): record of the two-stage rifting on the distal passive margin of Adria. Basin Research, 21, 335-353.
Bretthorst, G.L. 1988. Bayesian Spectrum Analysis and Parameter Estimation. Springer, Berlin, 209 pp.
Crampton, J.S., Meyers, S.R., Cooper, R.A., Sadler, P.M., Foote, M. and Harte, D. 2018. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles. Proceedings of the National Academy of Sciences of the United States of America, 115, 5686-5691.
Curry, W.B., Shackleton, N.J., Richter, C. et al. 1995. Leg 154 synthesis. Proceedings of the Ocean Drilling Program Initial Reports, 154, 421-442.
Gallois, R.W. 2000. The stratigraphy of the Kimmeridge Clay (Upper Jurassic) in the RGGE Project boreholes at Swanworth Quarry and Metherhills, Dorset. Proceedings of the Geologists’ Association, 111, 265-280.
Gregory, P. C. 2005. Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University Press, 468 pp.
Hinnov, L.A., Wu, H. and Fang, Q. 2016. Reply to the comment on “Geologic evidence for chaotic behaviour of the planets and its constraints on the third-order eustatic sequences at the end of the Late Paleozoic Ice Age” by Qiang Fang, Huaichun Wu, Linda A. Hinnov. Xiuchun Jing, Xunlian Wang, and Qingchun Jiang [Palaeogeography Palaeoclimatology Palaeoeceology 400 (2015) 848-859]. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 475-480.
House, M.R. 1985. A new approach to an absolute time scale from measurements of orbital cycles and sedimentary microrhythms. Nature, 313, 17-22.
Hopkins, A.M., Miller, C.J., Connolly, A.J., Genovese, C, Nichol, R.C. and Wasserman, L. 2002. A new source detection algorithm using the false-discovery rate. The Astronomical Journal, 123, 1086-1094.
Huang, C., Hesselbo, S.P. and Hinnov, L. 2010. Astrochronology of the late Kimmeridge Clay (Dorset, England) and implications for Earth system processes. Earth and Planetary Science Letters, 289, 242-255.
Huybers, P. and Wunsch, C. 2004. A depth-derived Pleistocene age model: uncertainty estimates, sedimentation variability, and nonlinear climate change. Paleoceanography, 19, PA1028.
Kemp, D.B. 2016. Optimizing significance testing of astronomical forcing in cyclostratigraphy. Paleoceanography, 31, 1516-1531.
Li, M., Kump, L.R., Hinnov, L.A. and Mann, M.E. 2018. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters, 501, 165-179.
Lord, A.R. and Davis, P.G. 2010. Fossils from the Lower Lias of the Dorset Coast, Palaeontological Association Field Guide to Fossils 13, 444 pp.
Mann, M. E. and Lees, J. M. 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409–445.
Martinez, M., Kotov, S., De Vleeschouwer, D., Pas, D. and Pälike, H. 2016. Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series. Climates Past, 12, 1765-1783.
Meyers, S.R. 2012. Seeing red in cyclic stratigraphy: spectral noise estimation for astrochronology. Paleoceanography, 27, PA3228.
Meyers, S.R. 2019. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews, 190, 190-223.
Miller, C. J., Genovese, C., Nichol, R. C., Wasserman, L., Connolly, A., Reichart, D., Hopkins, A., Schneider, J. and Moore, A. 2001. Controlling the false-discovery rate in astrophysical data analysis. The Astronomical Journal, 122, 3492–3505.
Morgans-Bell, H.S., Coe, A.L., Hesselbo, S.P., Jenkyns, H.C., Weedon, G.P., Marshall, J.E.A., Tyson, R.V. and Williams, C.L. 2001. Integrated stratigraphy of the Kimmeridge Clay Formation (Upper Jurassic) based on exposures and boreholes in south Dorset, UK. Geological Magazine, 138, 511-539.
Page, K.N. 2010. Stratigraphical framework. In: Lord, A.R. and Davis, P.G. (ed.), Fossils from the Lower Lias of the Dorset Coast, Palaeontological Association Field Guide to Fossils 13, 33-53.
Päike, H., Frazier, J. and Zachos, J.C. 2003. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quaternary Science Reviews, 25, 3138-3149.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1992. Numerical Recipes in Fortran, The Art of Scientific Computing. Cambridge University Press, Cambridge, 963 pp.
Priestley, M.B. 1981: Spectral analysis and time series. Academic Press, London, 890 pp.
Proistosescu, C., Huybers, P. and Maloof, A. C. 2012. To tune or not to tune: detecting orbital variability in Oligo-Miocene climate records. Earth and Planetary Science Letters, 325-326, 100-107.
Ruddiman, W. F., Raymo, M. and McIntyre, A. 1986. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth and Planetary Science Letters, 80, 117–129.
Ruddiman, W.F., Kidd, R.B, Thomas, E., et al. 1987b. Introduction, background, and explanatory notes, deep sea drilling project Leg 94, North Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project, 94, 5-19.
Ruddiman, W.F., McIntyre, A. and Raymo, M. 1987a. Paleoenvironmental results from North Atlantic sites 607 and 609. Initial Reports of the Deep Sea Drilling Project, 94, 855-878.
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M. and Backman, J. 1989. Pleistocene evolution: northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 4, 353–412.
Ruhl, M., Hesselbo, S.P., Hinnov, L., Jenkyns, H.C., Xu, W., Riding, J.B., Storm, M., Minisini, D., Ullmann, C.V. and Leng, M.J. 2016. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations. Earth and Planetary Science Letters, 455, 149–165.
Schwarzacher, W. 1975. Sedimentation models and quantitative stratigraphy. Elsevier, 382 pp. Shackleton, N.J., Berger, A. and Peltier, W.R. 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh Earth Sciences, 81, 251–261.
Shackleton, N.J., Crowhurst, S.J., Weedon, G.P. and Laskar, J. 1999. Astronomical calibration of Oligocene-Miocene time. Philosophical Transactions of the Royal Society of London, A, 357, 1907-1929.
Vandenberghe, N. 1978. Sedimentology of the Boom Clay (Rupelian) in Belgium. Proceedings of the Koninklijke Akademie voor Wetenschappen België, 40, 1-137.
Van Echelpoel, E. and Weedon, G.P. 1990. Milankovitch cyclicity and the Boom Clay Formation: an Oligocene siliciclastic shelf in Belgium. Geological Magazine, 127, 599-604.
Vaughan, S., Bailey, R.J. and Smith, D.G. 2011. Detecting cycles in stratigraphic data: spectral analysis in the presence of red noise. Paleoceanography, 26, PA4211.
Vaughan, S., Bailey, R.J. and Smith, D.G. 2015. Cyclostratigraphy: data filtering as a source of spurious spectral peaks. In: Smith, D.G., Bailey, R.G., Burgess, P.M. and Fraser, A.J. (ed.) Strata and Time: Probing the Gaps in Our Understanding, 151-157. Special Publications 404 Geological Society, London.
Vis, G-J., Verweij, H. and Koenen, M. 2016. The Rupel Clay Member in the Netherlands: towards a comprehensive understanding of its geometry and depositional environment. Netherlands Journal of Geosciences, 95, 221-251.
Weedon, G.P. 1986. Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic (Blue Lias) of South Britain. Earth and Planetary Science Letters, 76, 321-335.
Weedon, G.P. 1987. Palaeoclimatic significance of open-marine cyclic sequences. D. Phil. Thesis (in English) University of Oxford, 2 volumes available at: http://ora.ox.ac.uk/objects/uuid:aa009e6b-d429-4340-b3c5-30f5227f0148.
Weedon, G.P. 1989. The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering, with examples from the Lias of Switzerland. Journal of the Geological Society, London, 146, 133–144.
Weedon, G.P., 1997. Data Report. Measurements of magnetic susceptibility for the Oligocene and Lower Miocene of Site 925. Proceedings of the Ocean Drilling Program, Scientific Results, 154, 529-532.
Weedon, G.P., Shackleton, N.J. and Pearson, P.N. 1997. The Oligocene time scale and cyclostratigraphy on the Ceara Rise, western Equatorial Atlantic. Proceedings of the Ocean Drilling Program, Scientific Results, 154, 101-114.
Weedon, G.P. and Jenkyns, H.C. 1999. Cyclostratigraphy and the Early Jurassic time scale: data from the Belemnite Marls, Dorset, southern England. Geological Society of America Bulletin, 111, 1823–1840.
Weedon, G.P., Jenkyns, H.C., Coe, A.L. and Hesselbo, S.P. 1999. Astronomical calibration of the Jurassic timescale from cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society, London, 357, 1787–1813.
Weedon, G.P., Coe, A.L. and Gallois, R.W. 2004. Cyclostratigraphy, orbital tuning and inferred productivity for the type Kimmeridge Clay (Late Jurassic), Southern England. Journal of the Geological Society, London, 161, 655–666.
Weedon, G.P., Jenkyns, H.C. and Page, K.N. 2018. Combined sea-level and climate controls on limestone formation, hiatuses and ammonite preservation in the Blue Lias Formation, South Britain (uppermost Triassic – Lower Jurassic). Geological Magazine, 155, 1117-1149.
Weedon, G.P., Page, K.N. and Jenkyns, H.C., 2019. Cyclostratigraphy, stratigraphic gaps and the duration of the Hettangian Stage (Jurassic): insights from the Blue Lias Formation of Southern Britain. Geological Magazine, 156, 1469-1509.
Wiedenmayer, F. 1980. Die ammoniten der mediterranen Provinz im Pliensbachian und unteren Toarcian aufgrund neuer Untersuchhungen im Generoso-Becken (Lombardische Alpen). Denkschriften der Schweizerischen Naturforschenden Gesellschaft, 93, Birhäuser, Stuttgart, 260 pp.
Winterer, E.L. and Bosellini, A. 1981. Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy. The American Association of Petroleum Geologists Bulletin, 65, 394-421.
Zachos, J.C., Flower, B.Abdi, H. 2007. The Bonferroni and Šidák corrections for multiple comparisons. In: Salkind, N. (ed.), Encyclopedia of Measurement and Statistics, Sage, 103-107.
Abels, H.A., Van Simaeys, S., Hilgen, F.J., De Man, E. and Vandenberghe, N. 2007. Obliquity-dominated glacio-eustatic sea level change in the early Oligocene: evidence from the shallow marine siliciclastic Rupelian stratotype (Boom Formation, Belgium). Terra Nova, 19, 65-73. https://doi.org/10.1111/j.1365-3121.2006.00716.x
Barnard, P.C. and Cooper, B.S. 1981. Oils and source rocks of the North Sea area. In: Woodland, A.W. (ed.), Petroleum Geology of the Continental Shelf of North-West Europe, Applied Science Publishers, London, pp. 169-175.
Becker, K., Sakai, H., et al. 1987. Sites 677 and 678. Proceedings of the Ocean Drilling Program, Initial Reports, 111, 253-346. https://doi.org/10.2973/odp.proc.ir.111.1988
Benjamini, Y. and Hochberg, Y. 1995. Controlling the false-discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, B57, 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Bernoulli, D. 1964. Zur Geologie des Monte Generoso (Lombardische Alpen). Beiträge zur Geologischen Karte der Schweiz, 118, Kümmerly and Frey, Bern, 134 pp.
Bernoulli, D. and Ulmer, P. 2016. Dropstones in Rosso Ammonitico-facies pelagic sediments of the Southern Alps (southern Switzerland and northern Italy). Swiss Journal of Geosciences, 109, 57-67. https://doi.org/10.1007/s00015-015-0205-0
Berra, F., Galli, M.T., Reghellin, F., Torricelli, S. and Fantoni, R. 2009. Stratigraphic evolution of the Triassic-Jurassic succession in the western Southern Alps (Italy): record of the two-stage rifting on the distal passive margin of Adria. Basin Research, 21, 335-353. https://doi.org/10.1111/j.1365-2117.2008.00384.x
Bretthorst, G.L. 1988. Bayesian Spectrum Analysis and Parameter Estimation. Springer, Berlin, 209 pp. https://doi.org/10.1007/978-1-4684-9399-3
Crampton, J.S., Meyers, S.R., Cooper, R.A., Sadler, P.M., Foote, M. and Harte, D. 2018. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles. Proceedings of the National Academy of Sciences of the United States of America, 115, 5686-5691. https://doi.org/10.1073/pnas.1714342115
Curry, W.B., Shackleton, N.J., Richter, C. et al. 1995. Leg 154 synthesis. Proceedings of the Ocean Drilling Program Initial Reports, 154, 421-442. https://doi.org/10.2973/odp.proc.ir.154.1995
Gallois, R.W. 2000. The stratigraphy of the Kimmeridge Clay (Upper Jurassic) in the RGGE Project boreholes at Swanworth Quarry and Metherhills, Dorset. Proceedings of the Geologists' Association, 111, 265-280. https://doi.org/10.1016/S0016-7878(00)80019-X
Gregory, P. C. 2005. Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University Press, 468 pp. https://doi.org/10.1017/CBO9780511791277
Hinnov, L.A., Wu, H. and Fang, Q. 2016. Reply to the comment on "Geologic evidence for chaotic behaviour of the planets and its constraints on the third-order eustatic sequences at the end of the Late Paleozoic Ice Age" by Qiang Fang, Huaichun Wu, Linda A. Hinnov. Xiuchun Jing, Xunlian Wang, and Qingchun Jiang [Palaeogeography Palaeoclimatology Palaeoeceology 400 (2015) 848-859]. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 475-480. https://doi.org/10.1016/j.palaeo.2016.07.030
House, M.R. 1985. A new approach to an absolute time scale from measurements of orbital cycles and sedimentary microrhythms. Nature, 313, 17-22.
Hopkins, A.M., Miller, C.J., Connolly, A.J., Genovese, C, Nichol, R.C. and Wasserman, L. 2002. A new source detection algorithm using the false-discovery rate. The Astronomical Journal, 123, 1086-1094. https://doi.org/10.1086/338316
Huang, C., Hesselbo, S.P. and Hinnov, L. 2010. Astrochronology of the late Kimmeridge Clay (Dorset, England) and implications for Earth system processes. Earth and Planetary Science Letters, 289, 242-255. https://doi.org/10.1016/j.epsl.2009.11.013
Huybers, P. and Wunsch, C. 2004. A depth-derived Pleistocene age model: uncertainty estimates, sedimentation variability, and nonlinear climate change. Paleoceanography, 19, PA1028. https://doi.org/10.1029/2002PA000857
Kemp, D.B. 2016. Optimizing significance testing of astronomical forcing in cyclostratigraphy. Paleoceanography, 31, 1516-1531. https://doi.org/10.1002/2016PA002963
Li, M., Kump, L.R., Hinnov, L.A. and Mann, M.E. 2018. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters, 501, 165-179. https://doi.org/10.1016/j.epsl.2018.08.041
Lord, A.R. and Davis, P.G. 2010. Fossils from the Lower Lias of the Dorset Coast, Palaeontological Association Field Guide to Fossils 13, 444 pp.
Mann, M. E. and Lees, J. M. 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409-445. https://doi.org/10.1007/BF00142586
Martinez, M., Kotov, S., De Vleeschouwer, D., Pas, D. and Pälike, H. 2016. Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series. Climates Past, 12, 1765-1783. https://doi.org/10.5194/cp-12-1765-2016
Meyers, S.R. 2012. Seeing red in cyclic stratigraphy: spectral noise estimation for astrochronology. Paleoceanography, 27, PA3228. https://doi.org/10.1029/2012PA002307
Meyers, S.R. 2019. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews, 190, 190-223. https://doi.org/10.1016/j.earscirev.2018.11.015
Miller, C. J., Genovese, C., Nichol, R. C., Wasserman, L., Connolly, A., Reichart, D., Hopkins, A., Schneider, J. and Moore, A. 2001. Controlling the false-discovery rate in astrophysical data analysis. The Astronomical Journal, 122, 3492-3505. https://doi.org/10.1086/324109
Morgans-Bell, H.S., Coe, A.L., Hesselbo, S.P., Jenkyns, H.C., Weedon, G.P., Marshall, J.E.A., Tyson, R.V. and Williams, C.L. 2001. Integrated stratigraphy of the Kimmeridge Clay Formation (Upper Jurassic) based on exposures and boreholes in south Dorset, UK. Geological Magazine, 138, 511-539. https://doi.org/10.1017/S0016756801005738
Page, K.N. 2010. Stratigraphical framework. In: Lord, A.R. and Davis, P.G. (ed.), Fossils from the Lower Lias of the Dorset Coast, Palaeontological Association Field Guide to Fossils 13, 33-53.
Päike, H., Frazier, J. and Zachos, J.C. 2003. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quaternary Science Reviews, 25, 3138-3149. https://doi.org/10.1016/j.quascirev.2006.02.011
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1992. Numerical Recipes in Fortran, The Art of Scientific Computing. Cambridge University Press, Cambridge, 963 pp.
Priestley, M.B. 1981: Spectral analysis and time series. Academic Press, London, 890 pp.
Proistosescu, C., Huybers, P. and Maloof, A. C. 2012. To tune or not to tune: detecting orbital variability in Oligo-Miocene climate records. Earth and Planetary Science Letters, 325-326, 100-107. https://doi.org/10.1016/j.epsl.2012.01.022
Ruddiman, W. F., Raymo, M. and McIntyre, A. 1986. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth and Planetary Science Letters, 80, 117-129. https://doi.org/10.1016/0012-821X(86)90024-5
Ruddiman, W.F., Kidd, R.B, Thomas, E., et al. 1987b. Introduction, background, and explanatory notes, deep sea drilling project Leg 94, North Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project, 94, 5-19. https://doi.org/10.2973/dsdp.proc.94.1987
Ruddiman, W.F., McIntyre, A. and Raymo, M. 1987a. Paleoenvironmental results from North Atlantic sites 607 and 609. Initial Reports of the Deep Sea Drilling Project, 94, 855-878. https://doi.org/10.2973/dsdp.proc.94.122.1987
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M. and Backman, J. 1989. Pleistocene evolution: northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 4, 353-412. https://doi.org/10.1029/PA004i004p00353
Ruhl, M., Hesselbo, S.P., Hinnov, L., Jenkyns, H.C., Xu, W., Riding, J.B., Storm, M., Minisini, D., Ullmann, C.V. and Leng, M.J. 2016. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations. Earth and Planetary Science Letters, 455, 149-165. https://doi.org/10.1016/j.epsl.2016.08.038
Schwarzacher, W. 1975. Sedimentation models and quantitative stratigraphy. Elsevier, 382 pp. Shackleton, N.J., Berger, A. and Peltier, W.R. 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh Earth Sciences, 81, 251-261. https://doi.org/10.1017/S0263593300020782
Shackleton, N.J., Crowhurst, S.J., Weedon, G.P. and Laskar, J. 1999. Astronomical calibration of Oligocene-Miocene time. Philosophical Transactions of the Royal Society of London, A, 357, 1907-1929. https://doi.org/10.1098/rsta.1999.0407
Vandenberghe, N. 1978. Sedimentology of the Boom Clay (Rupelian) in Belgium. Proceedings of the Koninklijke Akademie voor Wetenschappen België, 40, 1-137.
Van Echelpoel, E. and Weedon, G.P. 1990. Milankovitch cyclicity and the Boom Clay Formation: an Oligocene siliciclastic shelf in Belgium. Geological Magazine, 127, 599-604. https://doi.org/10.1017/S001675680001551X
Vaughan, S., Bailey, R.J. and Smith, D.G. 2011. Detecting cycles in stratigraphic data: spectral analysis in the presence of red noise. Paleoceanography, 26, PA4211. https://doi.org/10.1029/2011PA002195
Vaughan, S., Bailey, R.J. and Smith, D.G. 2015. Cyclostratigraphy: data filtering as a source of spurious spectral peaks. In: Smith, D.G., Bailey, R.G., Burgess, P.M. and Fraser, A.J. (ed.) Strata and Time: Probing the Gaps in Our Understanding, 151-157. Special Publications 404 Geological Society, London. https://doi.org/10.1144/SP404.11
Vis, G-J., Verweij, H. and Koenen, M. 2016. The Rupel Clay Member in the Netherlands: towards a comprehensive understanding of its geometry and depositional environment. Netherlands Journal of Geosciences, 95, 221-251. https://doi.org/10.1017/njg.2016.25
Weedon, G.P. 1986. Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic (Blue Lias) of South Britain. Earth and Planetary Science Letters, 76, 321-335. https://doi.org/10.1016/0012-821X(86)90083-X
Weedon, G.P. 1987. Palaeoclimatic significance of open-marine cyclic sequences. D. Phil. Thesis (in English) University of Oxford, 2 volumes available at: http://ora.ox.ac.uk/objects/uuid:aa009e6b-d429-4340-b3c5-30f5227f0148.
Weedon, G.P. 1989. The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering, with examples from the Lias of Switzerland. Journal of the Geological Society, London, 146, 133-144. https://doi.org/10.1144/gsjgs.146.1.0133
Weedon, G.P., 1997. Data Report. Measurements of magnetic susceptibility for the Oligocene and Lower Miocene of Site 925. Proceedings of the Ocean Drilling Program, Scientific Results, 154, 529-532. https://doi.org/10.2973/odp.proc.sr.154.137.1997
Weedon, G.P., Shackleton, N.J. and Pearson, P.N. 1997. The Oligocene time scale and cyclostratigraphy on the Ceara Rise, western Equatorial Atlantic. Proceedings of the Ocean Drilling Program, Scientific Results, 154, 101-114. https://doi.org/10.2973/odp.proc.sr.154.103.1997
Weedon, G.P. and Jenkyns, H.C. 1999. Cyclostratigraphy and the Early Jurassic time scale: data from the Belemnite Marls, Dorset, southern England. Geological Society of America Bulletin, 111, 1823-1840. https://doi.org/10.1130/0016-7606(1999)111<1823:CATEJT>2.3.CO;2
Weedon, G.P., Jenkyns, H.C., Coe, A.L. and Hesselbo, S.P. 1999. Astronomical calibration of the Jurassic timescale from cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society, London, 357, 1787-1813. https://doi.org/10.1098/rsta.1999.0401
Weedon, G.P., Coe, A.L. and Gallois, R.W. 2004. Cyclostratigraphy, orbital tuning and inferred productivity for the type Kimmeridge Clay (Late Jurassic), Southern England. Journal of the Geological Society, London, 161, 655-666. https://doi.org/10.1144/0016-764903-073
Weedon, G.P., Jenkyns, H.C. and Page, K.N. 2018. Combined sea-level and climate controls on limestone formation, hiatuses and ammonite preservation in the Blue Lias Formation, South Britain (uppermost Triassic - Lower Jurassic). Geological Magazine, 155, 1117-1149. https://doi.org/10.1017/S001675681600128X
Weedon, G.P., Page, K.N. and Jenkyns, H.C., 2019. Cyclostratigraphy, stratigraphic gaps and the duration of the Hettangian Stage (Jurassic): insights from the Blue Lias Formation of Southern Britain. Geological Magazine, 156, 1469-1509. https://doi.org/10.1017/S0016756818000808
Wiedenmayer, F. 1980. Die ammoniten der mediterranen Provinz im Pliensbachian und unteren Toarcian aufgrund neuer Untersuchhungen im Generoso-Becken (Lombardische Alpen). Denkschriften der Schweizerischen Naturforschenden Gesellschaft, 93, Birhäuser, Stuttgart, 260 pp. https://doi.org/10.1007/978-3-0348-7827-2
Winterer, E.L. and Bosellini, A. 1981. Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy. The American Association of Petroleum Geologists Bulletin, 65, 394-421. https://doi.org/10.1306/2F9197E2-16CE-11D7-8645000102C1865D
Zachos, J.C., Flower, B.P. and Paul, H. 1997. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature, 388, 567-570. https://doi.org/10.1038/41528
Zachos, J.C., Shackleton, N.J., Revenaugh, J.S., Pälike, H. and Flower, B.P. 2001. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science, 292, 274-278. https://doi.org/10.1126/science.1058288P. and Paul, H. 1997. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature, 388, 567-570.
Zachos, J.C., Shackleton, N.J., Revenaugh, J.S., Pälike, H. and Flower, B.P. 2001. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science, 292, 274-278.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.