Desafíos y oportunidades para un futuro de éxito en la industria minera

Autores/as

  • António Mateus Universidade de Lisboa
  • Luís Martins ASSIMAGRA

DOI:

https://doi.org/10.21701/bolgeomin.130.1.007

Palabras clave:

criticidad, desafíos de la industria minera, economía circular, recursos para el futuro, sostenibilidad

Resumen


Los modelos actuales de crecimiento económico sostenible resultan intensivos en el uso de metales, y no tendrán éxito en el futuro si no se asegura un suministro continuado de los productos derivados de los minerales. Aparte de esta evidencia, existe todavía un significativo rechazo relacionado con la exploración mineral y las actividades mineras, a menudo reflejado en: (i) una opinión pública desfavorable; y (ii) la ausencia de medidas políticas o una continuidad en las agendas que valoren la manera en que se producen los minerales y a los actores directa o indirectamente envueltos en esta producción. Para tener éxito, la industria minera deberá (re)definir su estrategia y encontrar acercamientos innovadores a los antiguos problemas, demostrando claramente que los productos minerales pueden ser suministrados eficientemente para mantener del desarrollo global y proporcionar rutas adecuadas al bienestar y la calidad de vida, proporcionando a su vez un valor real a todos los interesados. En este trabajo se realizará una revisión concisa de los  principales desafíos que se encuentra la industria minera, señalando también las oportunidades más relevantes y avanzando algunas propuestas para afrontar de manera constructiva las debilidades y amenazas identificadas. El resultado principal es que el equilibrio en el largo plazo, entre suministro y demanda de productos minerales, requiere acciones concertadas en diferentes frentes apuntando a: (i) la salvaguarda de los recursos conocidos; (ii) estudios geológicos de alta calidad (dirigidos científica y tecnológicamente); (iii) mejoras en minería y transformación/beneficio; (iv) avances en la combinación de materias primas de origen primario y secundario, así como una mayor preocupación en su empleo; (v) una política minera efectiva y estable; y (vi) una nueva percepción del papel jugado por la industria minera mediante un diálogo fructífero con la sociedad en general.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Achzet B., Helbig C., 2013. How to evaluate raw material supply risks - an overview. Resources Policy, 38: 435-447. https://doi.org/10.1016/j.resourpol.2013.06.003

Ali S.H., 2014. Social and environmental impact of the rare earth industries. Resources, 3: 123-134. https://doi.org/10.3390/resources3010123

Ali S.H., Giurco D., Arndt N., Nickless E., Brown G., Demetriades A., Durrheim R., Enriquez M.A., Kinnaird J., Littleboy A., Meinert L.D., Oberhänsli R., Salem J., Schodde R., Schneider G., Vidal O., Yakovleva N., 2017. Mineral supply for sustainable development requires resource governance. Nature, 543: 367-372. https://doi.org/10.1038/nature21359

Allington R., Bailey E., Demecheleer P., 2016. Applications of geoscience in land-use and mineral planning; the importance of an integrated approach. Geophysical Research Abstracts.Vol. 18, EGU General Assembly 2016.

Angerer G., Marscheider-Weidemann F., Lüllmann A., Erdmann L., Scharp M., Handke V., Marwede M., 2009. Raw materials for emerging technologies - the influence of sector-specific feed stock demand on future raw materials consumption in Material-Intensive Emerging Technologies. German Federal Ministry of Economics and Technology.

Arndt N.T., Ganino C., 2012. Metals and society: an introduction to economic geology. Springer, p 160. https://doi.org/10.1007/978-3-642-22996-1

Arndt N.T., Fontboté L., Hedenquist J.W., Kesler S.E., Thompson J.F.H., Wood D.G., 2017. Future global mineral resources. Geochemical Perspectives, 6: 1-171. https://doi.org/10.7185/geochempersp.6.1

Benavides J., Kyser T.K., Clark A.H., Stanley C., Oater C., 2008. Exploration guides for copper-rich iron oxide-copper-gold deposits in the Mantoverde area, northern Chile: the integration of host-rock molar element ratios and oxygen isotope compositions. Geochemistry: Exploration, Environment, Analysis, 8: 343-367. https://doi.org/10.1144/1467-7873/07-165

BGS, 2015. Risk List 2015: An Updated Supply Risk Index for Chemical Elements or Element Groups which are of Economic Value. British Geological Survey, Nottingham, United Kingdom.

BIO by Deloitte, 2015. Study on data for a raw material system analysis: roadmap and test of the fully operational MSA for raw materials. Prep. Eur. Comm. DG GROW.

Blagoeva D., Aves Dias P., Marmier A., Pavel C., 2016. Assessment of potential bottlenecks along the materials supply chain for the future deployment of low-carbon energy and transport technologies in the EU. Wind power, photovoltaic and electric vehicles technologies, time frame: 2015-2030. European Commission, DG Joint Research Centre. (No. EUR 28192 EN).

Blenginia G.A., Nussa P., Dewulfa J., Nitaa V., Peiròa L.T., Vidal-Legaza B. Latunussaa C., Mancinia L., Blagoevab D., Penningtona D., Pellegrinic M., Van Maerckev A., Solarc S., Groholc M., Ciupageaa C., 2017. EU methodology for critical raw materials assessment: policy needs and proposed solutions for incremental improvements. Resources Policy, 53: 12-19. https://doi.org/10.1016/j.resourpol.2017.05.008

Bloodworth A., Gunn G., 2012. The future of the global minerals and metals sector: issues and challenges out to 2050. Géosciences, 15: 90-97. Brown G.E., Hochella M.F.Jr., Calas G., 2017. Improving mitigation of the long-term legacy of mining activities: nano- and molecular-level concepts and methods. Elements, 13: 325-330. https://doi.org/10.2138/gselements.13.5.325

Buchert M., Schüler D., Bleher D., 2009. Critical metals for future sustainable technologies and their recycling potential. United Nations Environment Programme, United Nations University, Paris.

Buijs B., Sievers H., Tercero Espinoza L.A., 2012. Limits to the critical raw materials approach. Waste Resources Management, 165: 201-208. https://doi.org/10.1680/warm.12.00010

Calvo G., Mudd G., Valero A., Valero A., 2016. Decreasing ore grades in global metallic mining: a theoretical issue or a global reality. Resources, 36. https://doi.org/10.3390/resources5040036

Champion D.C., Huston D.L., 2016. Radiogenic isotopes, ore deposits and metallogenic terranes: novel approaches and the mineral systems concept. Ore Geology Reviews, 76: 229-256. https://doi.org/10.1016/j.oregeorev.2015.09.025

Christmann P., 2018. Towards a more equitable use of mineral resources. Natural Resources Research, 27: 159-177. https://doi.org/10.1007/s11053-017-9343-6

Cheng Q., Zhao P., 2011. Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction. Geoscience Frontiers, 2: 67-79. https://doi.org/10.1016/j.gsf.2010.12.003

Codeço M.S., Mateus A., Figueiras J., Rodrigues P., Gonçalves L., 2018. Development of the Ervidel-Roxo and Figueirinha-Albernoa volcanic seuences in the Iberian Pyrite Belt, Portugal: metallogenic and geodynamic implications. Ore Geology Reviews, 98: 80-108. https://doi.org/10.1016/j.oregeorev.2018.05.009

Cook E., 1976. Limits to exploitation of nonrenewable resources. Science 191: 677-682. https://doi.org/10.1126/science.191.4228.677

Cooper S.J.C., Giesekam J., Hammond G.P., Norman J.B., Owen A., Rogers J.R., Scott K., 2017. Thermodynamic insights and assessment of the "circular econmy". Journal of Cleaner Production, 162: 1356-1367. https://doi.org/10.1016/j.jclepro.2017.06.169

Coulomb R., Dietz S., Godunova M., Bligaard Nielsen T., 2015. Critical minerals today and in 2030 (OECD Environment Working Papers). Organisation for Economic Cooperation and Development, Paris.

Cowell R., Owens S., 1998. Suitable locations: equity and sustainability in the minerals planning process. Regional Studies 32, 797-811. https://doi.org/10.1080/00343409850117960

Cowell R., Murdoch J., 1999. Land use and the limits to (regional) governance: some lessons from planning for housing and minerals in England. International Journal of Urban and Regional Research 23, 654-669. https://doi.org/10.1111/1468-2427.00221

Cowell S.J., Wehrmeyer, Argust P.W., Roberston G.S., 1999. Sustainability and primary extraction industries: theories and practices. Resources Policy, 25: 277-286. https://doi.org/10.1016/S0301-4207(00)00003-9

Cox L.A., 2008. What's wrong with risk matrices? Risk Analysis, 28: 497-512. https://doi.org/10.1111/j.1539-6924.2008.01030.x

Craig J.R., 2001. Ore-mineral textures and the tales they tell. The Canadian Mineralogist, 39: 937-956. https://doi.org/10.2113/gscanmin.39.4.937

Crowson P.C.F., 2011. Mineral reserves and future minerals availability. Mineral Economics, 24, 1-6. https://doi.org/10.1007/s13563-011-0002-9

De Boer M.A., Lammertsma K., 2013. Scarcity of rare earth elements Chem. Sus. Chem., 6: 2045-2055. https://doi.org/10.1002/cssc.201200794

De Villers J.P.R., 2017. How to sustain mineral resources: beneficiation and mineral engineering opportunities. Elements, 13: 307-312. https://doi.org/10.2138/gselements.13.5.307

Deloite Sustainability, BGS, BRGM, TNO, 2017. Study on the review of the list of critical raw materials. Criticality assessments. Final Report prepared for the European Commission, 93p.

Dewulf J., Blengini G.A., Pennington D., Nuss P., Nassar N.T., 2016. Criticality on the international scene: quo vadis? Resources Policy, 50: 169-176. https://doi.org/10.1016/j.resourpol.2016.09.008

Dill G.G., 2018. Geology and chemistry of Variscan-type pegmatite systems (SE Germany) - with special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore Geology Reviews, 92: 205-239. https://doi.org/10.1016/j.oregeorev.2017.11.016

Dupuis C., Beaudoin G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposits. Mineralium Deposita, 46: 319-335. https://doi.org/10.1007/s00126-011-0334-y

Erdmann L., Graedel T.E., 2011. Criticality of non-fuel minerals: a review of major approaches and analyses Environ. Sci. Technol., 45: 7620-7630. https://doi.org/10.1021/es200563g

EU Commission, 2010. Critical Raw Materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials (Brussels: EU Commission).

EU Commission, 2014. Critical Raw Materials for the EU. Report of the Ad-Hoc Working Group on Defining Critical Raw Materials (Brussels: EU Commission).

EU Commission, 2015. Closing the Loop - An EU action plan for the Circular Economy. COM (2015) 614 Final (Brussels: EU Commission).

Evans D., Stephenson M., Shaw R., 2009). The present and future use of "land" below ground. Land Use Policy, 26: 302-316. https://doi.org/10.1016/j.landusepol.2009.09.015

Fizaine F., 2013. By product production of minor metals: threat or opportunity for the development of clean technologies? The PV sector as an illustration. Resources Policy, 38: 373-383. https://doi.org/10.1016/j.resourpol.2013.05.002

Fortier S.M., Thomas C.L., McCullough E.A., Tolcin A.C., 2018. Global trends in mineral commodities for advanced technologies. Natural Resources Research, 27: 191-200. https://doi.org/10.1007/s11053-017-9340-9

Frenzel M., Tolosana-Delgado R., Gutzmer J., 2015. Assessing the supply potential of high-tech metals-a general method. Resources Policy, 46: 45-58. https://doi.org/10.1016/j.resourpol.2015.08.002

Frenzel M., Ketris M.P., Seifert T., Gutzmer J., 2016. On the current and future availability of gallium Resources Policy, 47: 38-50. https://doi.org/10.1016/j.resourpol.2015.11.005

Frenzel M., Kullik J., Reuter M.A., Gutzmer J., 2017. Raw material 'criticality' - sense or nonsense? Journal of Physics. D: Applied Physics 50. https://doi.org/10.1088/1361-6463/aa5b64

George D.A.R., Chi-ang B.L., Chen Y., 2015. A circular economy model of economic growth. Environmental Modelling & Software, 73: 60-63. https://doi.org/10.1016/j.envsoft.2015.06.014

Ghisellini P., Cialani C., Ulgiati S., 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114: 11-32. https://doi.org/10.1016/j.jclepro.2015.09.007

Giurco D., Cooper C., 2012. Mining and sustainability: asking the right questions. Minerals and Engineering, 29: 3-12. https://doi.org/10.1016/j.mineng.2012.01.006

Giurco D., McLellan B., Franks D.M., Nansai, K., Prior, T., 2014. Responsible mineral and energy futures: views at nexus. Journal of Cleaner Production, 84: 322-338. https://doi.org/10.1016/j.jclepro.2014.05.102

Gleich B., Achzet B., Mayer H., Rathgeber A., 2013. An empirical approach to determine specific weights of driving factors for the price of commodities - a contribution to the measurement of the economic scarcity of minerals and metals. Resources Policy, 38: 350-362. https://doi.org/10.1016/j.resourpol.2013.03.011

Glöser S., Tercero Espinoza L., Grandenberger C., Faulstich M., 2015. Raw material criticality in the context of classical risk assessment. Resources Policy, 44: 35-46. https://doi.org/10.1016/j.resourpol.2014.12.003

Godinho M.M., 1982. Relação entre recursos e abundância de elementos químicos na crusta continental. Instituto Nacional de Investigação Científica, Centro de Geociências da Universidade de Coimbra, 58 p.

Goe M., Gaustad G., 2014. Identifying critical materials for photovoltaics in the US: a multi-metric approach. Applied Energy, 123: 387-396. https://doi.org/10.1016/j.apenergy.2014.01.025

Gonçalves M.A., Mateus A., Pinto F., Vieira R., 2018. Using multifractal modelling, singularity mapping, and geochemical indexes for targeting buried mineralization: application to the W-Sn Panasqueira ore-system. Journal of Geochemical Exploration, 189: 42-53. https://doi.org/10.1016/j.gexplo.2017.07.008

Goodland R., 2002. Responsible mining: the key to profitable resource development. Sustainability, 4: 2099-2126. https://doi.org/10.3390/su4092099

Gordon, R.B., Bertram, M., Graedel, T.E. 2006. Metal stocks and sustainability. Proceedings of the National Academy USA, 103 (5), 1209-1214. https://doi.org/10.1073/pnas.0509498103

Govett G.J.S., Govett M.H., 1972. Mineral resource supplies and the limits of economic growth. Earth Sci. Reviews, 8: 275-290. https://doi.org/10.1016/0012-8252(72)90110-9

Graedel T.E., 2011. On the future availability of the energy metals. https://doi.org/10.1146/annurev-matsci-062910-095759

Graedel T.E., Allwood J., Birat J.-P., Buchert M., Hagelüken C., Reck B.K., Sibley S.F., Sonnemann G., 2011. What do we know about metal recycling rates? J. Ind. Ecol., 15: 355-366. https://doi.org/10.1111/j.1530-9290.2011.00342.x

Graedel T.E., Barr R., Chandler C., Chase T., Choi J., Christoffersen L., Friedlander E., Henly C., Jun C., Nassar N.T., Schechner D., Warren S., Yang M., Zhu C., 2012. Methodology of metal criticality determination. Environment Science Technology, 46: 1063-1070. https://doi.org/10.1021/es203534z

Graedel T.E., Erdmann L., 2012. Will metal scarcity impede routine industrial use? MRS Bulletin, 37: 325-331. https://doi.org/10.1557/mrs.2012.34

Graedel T.E., Harper E.M., Nassar N.T., Reck B.K., 2015a. On the materials basis of modern society. Proc. Natl. Acad. Sci. U.S.A., 112: 6295-6300. https://doi.org/10.1073/pnas.1312752110

Graedel T.E., Harper E.M., Nassar N.T., Nuss P., Reck B.K., 2015b. Criticality of metals and metalloids. Proc. Natl. Acad. Sci., 4257-4262. https://doi.org/10.1073/pnas.1500415112

Graedel T.E., Klee R.J., 2002. Getting serious about sustainability. Environmental Science Technology, 6(4): 523-529. https://doi.org/10.1021/es0106016

Graedel T.E., Reck B.K., 2015. Six years of criticality assessments. What have we learned so far? J. Ind. Ecol., 20: 692-699. https://doi.org/10.1111/jiec.12305

Groves D.I., Goldfarb R.J., Santosh M., 2016. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings. Geoscience Frontiers, 7: 303-341. https://doi.org/10.1016/j.gsf.2015.07.001

Gunn G., 2011. Mineral scarcity-a non-issue? British Geological Survey.

Habib K., Wenzel H., 2016. Reviewing resource criticality assessment from a dynamic and technology specific perspective - using the case of direct-drive wind turbines. J. Clean. Production, 112: 3852-3863. https://doi.org/10.1016/j.jclepro.2015.07.064

Hagemann S., Dalstra H.I., Hodkiewicz P., Flis M., Thorne W., McCuaig C., 2007. Recent advances in BIF-related ore models and exploration strategies. In "Proceeding of Exploration 07: Fifth Decennial International Conference in Mineral Exploration", edited by B. Milkereit, 811-821.

Hall, N., Lacey, J., Carr-Cornish, S., and Dowd, A.-M., 2015. Social licence to operate: understanding how a concept has been translated into practice in energy industries. Journal of Cleaner Production, v. 86, 301-310. https://doi.org/10.1016/j.jclepro.2014.08.020

Henckens M.L.C.M., Driessen P.P.J., Worrell E., 2014. Metal scarcity and sustainability, analysing the necessity to reduce the extraction of scarce metals. Resources, Conservation and Recycling, 93: 1-8. https://doi.org/10.1016/j.resconrec.2014.09.012

Hilson G., Basu A.J., 2003. Devising indicators of sustainable development for the mining and minerals industry: an analysis of critical background issues. The International Journal of Sustainable Development & World Ecology, 10: 319-331. https://doi.org/10.1080/13504500309470108

Humphreys D., 1995. Whatever happened to security of supply? Minerals policy in the post-Cold War world. Resources Policy, 21: 91-97. https://doi.org/10.1016/0301-4207(95)00057-W

Hagemann S.G., Lisitsin V.A., Huston D.L., 2016. Mineral system analysis: Quo vadis. Ore Geology Reviews 76, 504-522. https://doi.org/10.1016/j.oregeorev.2015.12.012

Helbig C., Wietschel L., Thorenz A., Tuma A., 2016. How to evaluate raw material vulnerability - an overview. Resources Policy, 48: 13-24. https://doi.org/10.1016/j.resourpol.2016.02.003

Holk G.J., Kyser T.K., Chipley D., Hiatt E.E., Marlatt J., 2003. Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits. Journal of Geochemical Exploration, 80: 297-320. https://doi.org/10.1016/S0375-6742(03)00196-1

Holliday J.R., Cooke D.R., 2007. Advances in geological models and exploration methods for copper ± gold porphyry deposits. In "Proceeding of Exploration 07: Fifth Decennial International Conference in Mineral Exploration", edited by B. Milkereit, 791-809.

Humphreys D., 2001. Sustainable development: can mining afford it? Resources Policy, 27: 1-7. https://doi.org/10.1016/S0301-4207(01)00003-4

Humphreys D., 2013. Long-run availability of mineral commodities. Mineral Economics, 26:1-11. https://doi.org/10.1007/s13563-013-0033-5

Huston D.L., Mernagh T.P., Hagemann S.G., Doublier M.P., Fiorentini M., Champion D.C., Jaques A.L., Czarnota K., Cayley R., Skirrow R., Bastrakov E., 2016. Tectono-metallogenic systems - The place of mineral systems within tectonic evolution, with an emphasis on Australian examples. Ore Geology Reviews, 76: 168-210. https://doi.org/10.1016/j.oregeorev.2015.09.005

Iacovidov E., Velis C.A., Purnell P., Zwirner O., Brown A., Hahladakis J., Millward-Hopkins J., Williams P.T., 2017. Metrics for optimizing the multi-dimensional value of resources recovered from waste in a circular economy: a critical review. Journal of Cleaner Production, 166: 910-938. https://doi.org/10.1016/j.jclepro.2017.07.100

Inverno C., Rosa C., Matos J., Carvalho J., Castello-Branco J.M., Batista M.J., Granado I., Oliveira J.T., Araújo V., Pereira Z., Represas P., Solá A.R., Sousa P., 2015. Modelling of the Neves Corvo área. In: "3D, 4D and Predictive Modelling of Major Mineral Belts in Europe", P. Weihed (ed.), Mineral Resource Reviews: 231-261. https://doi.org/10.1007/978-3-319-17428-0_11

Jackson R.G., 2010. Application of 3D geochemistry to mineral exploration. Geochemistry: Exploration, Environment, Analysis, 10: 143-153. https://doi.org/10.1144/1467-7873/09-217

Jenkins H., Yakovleva N., 2006. Corporate social responsibility of the mining industry: exploring trends in social and environmental disclosure. Journal of Cleaner Production, 14: 271-284. https://doi.org/10.1016/j.jclepro.2004.10.004

Johnson J., Harper E.M., Lifset S., Graedel T.E., 2007. Dining at the Periodic Table: metal concentrations as they relate to recycling. Environmental Science and Technology, 41: 1759-1765. https://doi.org/10.1021/es060736h

Kavlak G., McNerney J., Jaffe R.L., Trancik J.E., 2015. Metals production requirements for rapid photovoltaics deployment. Energy Environ. Sci., 8: 1651-1659. https://doi.org/10.1039/C5EE00585J

Kelly D.L., Kelly K.D., Coker W.B., Caughlin B., Dohaty M.E., 2006. Beyond the obvious limits of ore deposits: the use of mineralogical, geochemical, and biological features for the remote detection of mineralization. Economic Geology, 101: 729-752. https://doi.org/10.2113/gsecongeo.101.4.729

Kerrich R., Wyman D.A., 2007. Review of developments in trace-elements fingerprinting of geodynamic settings and their implications for mineral exploration. Journal of Earth Sciences, 44: 465-487. https://doi.org/10.1080/08120099708728327

Kirchher J., Reike D., Hekkert M., 2017. Conceptualizing the circular economy: an analysis of 114 definitions. Resources, Conservation & Recycling, 127: 221-232. https://doi.org/10.1016/j.resconrec.2017.09.005

Kleijn R., van der Voet e., Kramer G.J., van Oers L., van der Giesen C., 2011. Metal requirements of low-carbon power generation. Energy, 36: 5640-5648. https://doi.org/10.1016/j.energy.2011.07.003

Korhonen J., Honkasalo A., Seppällä J., 2018. Circular economy: the concept and its limitations. Ecological Economics, 143: 37-46. https://doi.org/10.1016/j.ecolecon.2017.06.041

Krausmann F., Gringrich S., Eisenmenger N., Erb K.-H., Harberl H., Fisher-Kowalski M., 2009. Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68: 2696-2705. https://doi.org/10.1016/j.ecolecon.2009.05.007

Lazwcka P., 2014. Giant metallic deposits - a century of progresso. Ore Geology Reviews, 62: 259-314. https://doi.org/10.1016/j.oregeorev.2014.03.002

Lopes C., Lisboa V., Carvalho J., Mateus A., Martins L., 2018. Challenges to access and safeguard mineral resources for society: a case study of kaolin in Portugal. Land Use Policy, 79, 263-284. https://doi.org/10.1016/j.landusepol.2018.07.035

Lovik A.N., Restrepo E., Müller D.B., 2016. Byproduct metal availability constrained by dynamics of carrier metal cycle: the gallium-aluminum example. Environ. Sci. Technol., 50: 8453-8461. https://doi.org/10.1021/acs.est.6b02396

Lusty P.A., Gunn A.G., 2014. Challenges to global mineral resource security and options for future supply. In: Jenkin, G. R. T., Lusty, P. A. J.,McDonald, I., Smith, M. P., Boyce, A. J. & Wilkinson, J. J. (eds) Ore Deposits in an Evolving Earth. Geological Society, London, Special Publications, 393. https://doi.org/10.1144/SP393.14

McCuaig, T.C., Beresford, S., Hronsky, J., 2010. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 38, 128-138. https://doi.org/10.1016/j.oregeorev.2010.05.008

McCuaig, T.C., Hronsky, J.M.A., 2014. The mineral system concept: the key to exploration targeting. Soc. Econ. Geol. Spec. Publ. 18, 153-176.

Mason L., Prior T., Mudd G., Giurco D., 2011. Availability, addiction and alternatives: three criteria for assessing the impact of peak minerals on society. Journal of Cleaner Production, 19: 958-966. https://doi.org/10.1016/j.jclepro.2010.12.006

Massari S., Ruberti M., 2013. Rare earth elements as critical raw materials: focus on international markets and future strategies. Resources Policy, 38: 36-43. https://doi.org/10.1016/j.resourpol.2012.07.001

Mateus A., 2016. Overview of the mining and geological potential: challenges for the future (CRM). Portugal International Mining Business & Investment Summit, 12-14 April, Lisbon, Portugal.

Mateus A., 2017a. Recursos globais de lítio; situação actual e perspectivas futuras. Seminário DEGGE, Faculdade de Ciências, Universidade de Lisboa, 23 Março, Portugal.

Mateus A., 2017b. The relevance of primary mineral resources in circular economy models. Encontro Ciência'17, 3-5 Julho, Lisboa, Portugal.

Mateus, A., Lopes, C., Martins, L., Carvalho, J., 2017. Towards a multi-dimensional methodology supporting a safeguarding decision on the future access to mineral resources. Mineral Economics, 30: 229-255. https://doi.org/10.1007/s13563-017-0114-y

Martín A.R., Díaz M.R., Román, S.R., 2014. Measure of the mining image. Resources Policy 41, 23-30. https://doi.org/10.1016/j.resourpol.2014.01.004

Mason L., Prior T., Mudd G., Giurco D., 2011. Availability, addiction and alternatives: three criteria for assessing the impact of peak minerals on society. Journal of Cleaner Production, 19: 958-966. https://doi.org/10.1016/j.jclepro.2010.12.006

Mawhinney M., 2002. Sustainable development. Understanding the green debates. Blackwell Publishing, 190 p. https://doi.org/10.1002/9780470758564

Meadows, D.H., Meadows, D.L., Randers, J., and Behrens, W., III. 1972. The Limits to Growth. Universe Books, New York, 205 p.

Menaker G.I., 1978. Theoretical trace-element distributions for igneous rocks. Int. Geol. Rev., 23: 96-104. https://doi.org/10.1080/00206818209467220

McCullough E., Nassar N.T., 2017. Assessment of critical minerals: updated application of an early-warning screening methodology. Mineral Economics, 30: 257-272. https://doi.org/10.1007/s13563-017-0119-6

Meinert L.D., Robinson G.R.Jr., Nassar N.T., 2016. Mineral resources: reserves, peak production and the future. Resources, 5: 14. https://doi.org/10.3390/resources5010014

Moffat, K. and A. Zhang, 2014. The paths to social licence to operate: An integrative model explaining community acceptance of mining. Resources Policy 39: 61-70. https://doi.org/10.1016/j.resourpol.2013.11.003

Moran C.J., Lodhie S., Kunz N.C., Huisingh D., 2014. Sustainability in mining, minerals and energy: new processes, pathways and human interactions for a cautiously optimistic future. Journal of Cleaner Production, 84: 1-5. https://doi.org/10.1016/j.jclepro.2014.09.016

Moss R.L., Tzimas E., Willis P. et al., 2013. Critical metals in the path towards the decarbonisation of the EU energy sector. European Commission Joint Research Centre Institute for Energy and Transport, Luxembourg.

Mudd G.M., 2007a. An analysis of historic production trends in Australian base metal mining. Ore Geology Reviews, 32: 227-261. https://doi.org/10.1016/j.oregeorev.2006.05.005

Mudd G.M., 2007b. Global trends in gold mining: towards quantifying environmental and resource sustainability. Resources Policy, 32: 42-56. https://doi.org/10.1016/j.resourpol.2007.05.002

Mudd G.M., 2010. The environmental sustainability of mining in Australia: key mega-trends and looming constraints. Resources Policy, 35: 98-115. https://doi.org/10.1016/j.resourpol.2009.12.001

Mudd G.M., Jowitt S., 2018. Global resource assessments of primary metals: an optimistic reality check. Natural Resources Research 27, 229-240. https://doi.org/10.1007/s11053-017-9349-0

Mudd G.M., Jowitt S.M., Werner T.T., 2017. The world's lead-zinc mineral resources: scarcity, data, issues and opportunities. Ore Geology Reviews 80, 1160-1190. https://doi.org/10.1016/j.oregeorev.2016.08.010

Mudd G.M., Ward, J.D., 2008. Will sustainability constraints cause "peak minerals"? In: 3rd International Conference on Sustainability Engineering and Science: Blueprints for Sustainable Infrastructure. Auckland, New Zealand.

Mudd, G.M., and Weng, Z. 2012. Base metals. In: Letcher, T.M., and Scott, J.L. (eds.), Materials for a Sustainable Future. Royal Society of Chemistry, Cambridge, UK, 11-59. https://doi.org/10.1039/BK9781849734073-00011

Mudd G.M., Weng Z., Jowitt S. M., Turnbull I.D., Graedel T.E., 2013. Quantifying the recoverable resources of by-product metals: The case of cobalt. Ore Geology Reviews 55, 87-98. https://doi.org/10.1016/j.oregeorev.2013.04.010

Nassar N.T., Graedel T.E., Harper E.M., 2015. By-product metals are technologically essential but have problematic supply. Science Advances, 1(3). https://doi.org/10.1126/sciadv.1400180

Norgate T., Jahanshahi S., 2010. Low grade ore-smelt, leach or concentrate? Minerals Engineering, 23: 65-73. https://doi.org/10.1016/j.mineng.2009.10.002

Northey S.A., Mudd G.M., Werner T.T., 2018. Unresolved complexity in assessments of mineral resource depletion and availability. Natural Resources Research 27, 241-255. https://doi.org/10.1007/s11053-017-9352-5

NRC 2007 Minerals, Critical Minerals, and the US Economy (Washington, DC: The National Academies Press).

NSTC 2016 Assessment of Critical Minerals: Screening methodology and initial application. Product of the Subcommittee on Critical Strategic Mineral Supply Chains of the Committee on Environment, Natural Resources, and Sustainability (Washington, DC: National Science and Technology Council).

Oldenburg D.W., Pratt D.A., 2007. Geophysical inversion for mineral exploration: a decade of progress in theory and practice. In "Proceeding of Exploration 07: Fifth Decennial International Conference in Mineral Exploration", edited by B. Milkereit, 61-95.

Owen J.R., Kemp D., 2013. Social licence and mining: a critical perspective. Resources Policy, 38: 29-35. https://doi.org/10.1016/j.resourpol.2012.06.016

Owen J.R., Kemp D., 2014. Free prior and informed consent', social complexity and the mining industry: Establishing a knowledge base: Resources Policy, v. 41, 91-100. https://doi.org/10.1016/j.resourpol.2014.03.006

Owens S., 1997. Interpreting Sustainable Development. The case of land use planning. The Political Quarterly 69, Wiley Online Library. https://doi.org/10.1111/1467-923X.00118

Patiño-Douce, A.E., 2016. Metallic mineral resources in the twenty-first century. I. Historical extraction trends and expected demand. Natural Resources Research, 25: 71-90. https://doi.org/10.1007/s11053-015-9266-z

Petrie J., 2007. New models of sustainability for the resources sector. A focus on minerals and metals.Trans. IChemE, Part B, 85: 88-98. https://doi.org/10.1205/psep.05179

Phillips W.G.B., Edwards D.P., 1976. Metal prices as a function of ore grade. Resources Policy, 2: 167-178. https://doi.org/10.1016/0301-4207(76)90016-7

Piché M., Jébrak M., 2004. Normative minerals and alteration ondexes developed for mineral exploration. Journal of Geochemical Exploration, 82: 59-77. https://doi.org/10.1016/j.gexplo.2003.10.001

Piercey S.J., 2010. An overview of petrochemistry in the regional exploration for volcanogenic massive sulphide (VMS) deposits. Geochemistry: Exploration, Environment, Analysis, 10: 1-18. https://doi.org/10.1144/1467-7873/09-221

Prior, T., Giurco, D., Mudd, G.M., Mason, L., 2012. Resource depletion, peak minerals and the implications for sustainable resource management. Global Environmental Change 22, 577-587. https://doi.org/10.1016/j.gloenvcha.2011.08.009

Reck B.K., Graedel T.E., 2012. Challenges in metal recycling. Science, 337: 690-695. https://doi.org/10.1126/science.1217501

Revuelta M.B., 2018. Mineral resources; from exploration to sustainability assessment. Springer Textbooks in Earth Sciences, Geography and Environment. Springer International Publishing AG, 653 p.

Ritzén S., Sandström G.Ö, 2017. Barriers to the circular economy - integration of perspectives and domains. Procedia CIRP, 64: 7-12. https://doi.org/10.1016/j.procir.2017.03.005

Roelich K., Dawson D.A., Purnell P. et al., 2014. Assessing the dynamic material criticality of infrastructure transitions: a case of low carbon electricity. Applied Energy, 123: 378-386. https://doi.org/10.1016/j.apenergy.2014.01.052

Rosenau-Tornow D., Buchholz P., Riemann A., Wagner M., 2009. Assessing the long-term supply risks for mineral raw materials - a combined evaluation of past and future trends. Resources Policy 34: 161-175. https://doi.org/10.1016/j.resourpol.2009.07.001

Rudnick R.L., Gao S., 2014. Composition of the continental crust. In: Holland, H.D. & Turekian, K. K. (eds) Treatise on Geochemistry 2 nd Edition. Elsevier, Vol. 4: 1-52. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

Shields D.J., 1998. Nowrenewable resources in Economic, Social, and Environmental Sustainability. Nonrenewable Resources, 7: 251-261. https://doi.org/10.1007/BF02764350

Shodde R., 2010a. The declining discovery rate -what is the real story? AMIRA International's 8th Exploration Managers Conference 22-23 March 2010, Yarra Valley, Victoria.

Shodde R., 2010b. Global discovery trends 1950-2009: What, where and who found them. PDAC 2010, 7 March 2010, Toronto.

Schodde R., 2012. Global mineral exploration trends. China Mining Conference 3 rd -6 th November, Tianjin, China.

Shodde R., 2014a. Uncovering exploration trends and the future: where's exploration going? International Mining and Resources (IMARC) Conference, 22th September 2014 Melbourne, Australia.

Shodde R., 2014b. The Global Shift to Undercover Exploration - How fast? How effective? Society of Economic Geologists 2014 Conference 30th September 2014, Keystone, Colorado, USA.

Shodde R., 2017a. Recent Trends and Outlook for Global Exploration. PDAC 2017 6th March 2017, Toronto, Canada.

Schodde R., 2017b. Time delay between discovery and development - is it getting more difficult? China Mining Conference 23 rd September 2017, Tianjin, China.

Shodde R., 2017c. Long term trends in global exploration - are we finding enough metal? 11 th Fennoscandian Exploration and Mining Conference 31st October 2017, Levi, Finland.

Skinner B.J., 1976. A second iron age ahead? Am. Scientist, 64: 258-269.

Smith M.P., Moore K., Kavecsánszki D., Finch A.A., Kynicky J., Wall J., 2016. From mantle to critical zone: a review of large giant sized deposits of rare earth elements. Geoscience Frontiers, 7: 315-334. https://doi.org/10.1016/j.gsf.2015.12.006

Söderholm P., Tilton J.E., 2012. Material efficiency: an economic perspective. Resources, Conservation and Recycling, 61: 75-82. https://doi.org/10.1016/j.resconrec.2012.01.003

Suslick S.B., Machado I.F., Ferreira D.F., 2005. Recursos minerais e sustentabilidade. Campinas, SP, Editora Komedi, Brasil, 246 p.

Sverdrup H., Ragnasdóttir, K.A., 2014. Natural resources in a planetary perspective. Geochemical Perspectives, 3: 129-341. https://doi.org/10.7185/geochempersp.3.2

Syverson C., 2004. Product substitutability and productivity dispersion. Review of Economics and Statistics, 86: 534-550. https://doi.org/10.1162/003465304323031094

Tassinari C.C.G., Mateus A.M., Velásquez M.E., Munhá J.M.U., Lobato L.M., Bello R.M., Chiquini A.P., Campos W.F., 2015. Geochronology and thermochronology of gold mineralization in the Turmalina deposit, NE of the Quadrilátero Ferrífero region, Brazil. Ore Geology Reviews, 67: 368-381. https://doi.org/10.1016/j.oregeorev.2014.12.013

Tassinari C.C.G., Pinzon F.D., Ventura J.B., 2008. Age and sources of gold mineralization in the Marmato mining district, NW Colombia: a Miocene-Pliocene epizonal gold deposit. Ore Geology Reviews, 33: 505-518. https://doi.org/10.1016/j.oregeorev.2007.03.002

Thompson J.F.H., 2015. New approaches to familiar practices are critical for long-term success. Australian IMM Bulletin, Opinion, June 2015 (online access).

Tilton J.E., 2003. On borrowed time? Assessing the threat of mineral depletion. Resources for the Future, Washington DC, USA.

Tilton J.E., 2006. Depletion and the long-run availability of mineral commodities. In: Doggett, M.E., and Parry, J.R. (eds.), Wealth Creation in the Minerals Industry: Integrating Science, Business, and Education: Special Publication 12. Society of Economic Geologists, Littleton, CO, 61-70. https://doi.org/10.5382/SP.12.03

Tilton J.E., Crowson P.C.F., DeYoung J.H., Eggert R.G.Jr., Ericsson M., Guzmán J.I., Humphreys D., Lagos G., Maxwell P., Radetzki M., Singer D.A., Wellmer F.-W., 2018. Public policy and future mineral supplies. Resources Policy (Accessed March 2018). https://doi.org/10.1016/j.resourpol.2018.01.006

Tilton J.E., and Guzmán J.I. 2016. Mineral Economics and Policy. Routledge for RFF Press, New York, 255 p. https://doi.org/10.4324/9781315733708

Turner G., 2008. A comparison of The Limits of Growth with thirty years of reality. CSIRO Working Paper Series 2008-2009, 49 p.

Turner G., 2012. On the cusp of global collapse? Updated comparison of The Limits of Growth with Historical data. Gaia 1/2: 116-124. https://doi.org/10.14512/gaia.21.2.10

Turner G., 2014. Is global collapse imminent? MSSI Research Paper nº 4. Melbourne Sustainable Society Institute, the University of Melbourne, 22 p.

US Geological Survey, 2009. Mineral Commodity Summaries 2009. US Geological Survey, Reston, VA.

Van Vuuren D.P., Strengers B.J., de Vries H.J.M., 1999. Long term perspectives on world metal use - a system-dynamics model. Resources Policy, 25: 239-255. https://doi.org/10.1016/S0301-4207(99)00031-8

Vidal O., Goffé B., Arndt N., 2013. Metals for a low-carbon society. Nature Geosciences, 6: 894-896. https://doi.org/10.1038/ngeo1993

Vidal O., Roston F., François C., Giraud G., 2017. Global trends in mineral consumption and supply: the raw material-energy nexus. Elements, 13: 319-324. https://doi.org/10.2138/gselements.13.5.319

Yaksic A., Tilton J.E., 2009. Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium. Resources Policy, 34:185-194. https://doi.org/10.1016/j.resourpol.2009.05.002

Wall F., Rollat A., Pell R.S., 2017. Responsible sourcing of critical metals. Elements, 13: 313-318. https://doi.org/10.2138/gselements.13.5.313

Wang G., Carranza E.J., Zuo R., Hao Y., Du Y., Pang Z., Sun Y., Qu J., 2012. Mapping of district-scale potential targets using fractal methods. Journal of Geochemical Exploration, 122: 34-46. https://doi.org/10.1016/j.gexplo.2012.06.013

Wellmer F.-W., Hagelüken C., 2015. The feedback control cycle of mineral supply, increase of raw material efficiency, and sustainable development. Minerals, 5 (4). https://doi.org/10.3390/min5040527

Whiting T.H., Shodde R.C., 2006. Why do brownfields exploration? International Mine Management Conference 16 th - 18 th October 2006, Melbourne, Australia.

Wilkinson J.J., Chang Z.C., Cooke D.R., Baker M.J., Wilkinson C.C., Inglis S., Chen H., Gemmell J.B., 2015. The chlorite proximitor: a new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration, 152: 10-26. https://doi.org/10.1016/j.gexplo.2015.01.005

Worrall R., Neil D., Brereton D., Mulligan D., 2009. Towards a sustainable criteria and indicators framework for legacy mine land. Journal of Cleaner Production, 17: 1426-1434. https://doi.org/10.1016/j.jclepro.2009.04.013

Wrighton, C. E., Bee, E. J., and Mankelow, J. M., 2014. The development and implementation of mineral safeguarding policies at national and local levels in the United Kingdom: Resources Policy, v. 41, 160-170. https://doi.org/10.1016/j.resourpol.2014.05.006

Wyborn, L.A.I., Heinrich, C.A., Jaques, A.L., 1994. Australian Proterozoic mineral systems: essential ingredients and mappable criteria. AusIMM Publ. Ser. 5 (94), 109-115.

Zao R., Carranza E.J., Wang J., 2016. Spatial analysis and visualization of exploration geochemical data. Earth-Science Reviews, 158: 9-18. https://doi.org/10.1016/j.earscirev.2016.04.006

Zink T., Geyer R., 2017. Circular economy rebound. Journal of Industrial Ecology, 21: 593-602. https://doi.org/10.1111/jiec.12545

Descargas

Publicado

2019-03-30

Cómo citar

Mateus, A., & Martins, L. (2019). Desafíos y oportunidades para un futuro de éxito en la industria minera. Boletín Geológico Y Minero, 130(1), 99–121. https://doi.org/10.21701/bolgeomin.130.1.007

Número

Sección

Artículos

Datos de los fondos

Universidade de Lisboa
Números de la subvención UID/GEO/50019/2013