Las razones geológicas de la minería del cobre

Autores/as

  • L. de la Torre Universidad Politécnica de Madrid
  • J. A. Espí Universidad Politécnica de Madrid

DOI:

https://doi.org/10.21701/bolgeomin.130.1.009

Palabras clave:

cobre, economía mineral, geología económica, recursos minerales

Resumen


A pesar de encontrarse el debate abierto desde mediados del siglo pasado, existe un todavía débil conocimiento sobre la existencia real de los minerales tecnológica y económicamente accesibles. Para salir de esta situación, resulta necesario comenzar mejorando la información geológica en muchos aspectos, desde la precisión de la base cartográfica en zonas prometedoras, a la elaboración de modelos más precisos de aparición de mineralizaciones y, sobre todo, de sus controles geológicos. El paulatino descenso de las leyes explotadas, así como una producción en continuo crecimiento, acercan al debate la lejana amenaza del agotamiento, apartada del contexto real o geológico. Respecto al futuro, existen dos vertientes de opinión muy diferenciadas: analistas que ven los precios de las materias primas minerales estacionarios a largo plazo, concluyendo que la escasez de los metales, en general, no será de momento ningún problema. Otros, sin embargo, concluyen que la relación de precios con el tiempo posee una forma de U y, por lo tanto, la escasez estaría en aumento a largo plazo. Sin embargo, durante el pasado siglo y en periodos de explosión del consumo, no ha existido nunca problema alguno de escasez, en todo caso, una pérdida temporal del balance oferta-demanda.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ayres R. U. 2001. Resources, Scarcity, Growth and the Environment. Center for the Management of Environmental Resources. INSEAD. April 2001.

Banco Mundial. 2017. Informe Trimestral, abril 2017, hhtp://www.worldbank.org/commodities;pubdocs.world bank.org/en/174381493046968144/CMO-April-2017-Full-Report.pdf)

Cox D. P. and Singer D.A. editors.1992. Mineral Deposit Models. US. Geological Survey Bulletin 1693.

Cox D. P., Lindsey D.A. Singer D.A. and Diggles M.F. Sediment-Hosted Copper Deposits of the World: Deposit Models and Database. U.S. Geological Survey Open-File Report 03-107.

Crowson P. 2011. The Copper Conundrum. Mining Magazine. 14-21. November 2011

Cuddington J. y Jerret D. 2008. Supercycles in Real Market Prices? IMF Staff Papers, Vol 55, Nº4, 541-565. https://doi.org/10.1057/imfsp.2008.19

De la Torre, L., 2017. El progreso y la paradoja de los recursos naturales. La amenaza del agotamiento, Sistema nº247.

Dennis P. Cox, David A. Lindsey, Donald A. Singer, Barry C. Moring, and Michael F. European, Copper Institute, 2015. Annual Report.

Diggles. 2007. Sediment-Hosted Copper Deposits of the World: Deposit Models and Database. USGS. Open-File Report 03-107 Version 1.3 2003, revised 2007 Available online at http://pubs.usgs.gov/of/2003/of03-107/

Durán P y Tapia J. 2015. Depósitos de Sulfuros Masivos Vulcanogénicos (VMS) https://docplayer.es/41993269-Depositos-de-sulfuros-masivos-volcanogenicos-vms-semestre-primavera-2015-paulina-duran-joseline-tapia.html

Fischer-Kowalsky, M. y Haberl, H. 2000. El metabolismo socioeconómico, Ecología Polí-tica, nº 19.

Fischer-Kowalsky, M. y Swilling M. 2011. Decoupling natural resource use and environmen¬tal impacts from economic growth, Report of the Working Group on Decoupling to the International Resource Panel (UNEP).

Fletcher R. y Rammelt C. 2017. Decoupling: A Key Fantasy of the Post-2015 Sustainable Development Agenda, Globalizations, 14:3, 450-467. https://doi.org/10.1080/14747731.2016.1263077

Fulp M. 2017. "Mickey Fulp's Call on Copper". Investing News Network. May 30.

Gordon, R.B., M. Bertram and T.E. Graedel. 2006. Metal stocks and sustainability, Proceedings of the National Academy of Sciences, Vol. 103, No. 5, pp. 1209-1214. https://doi.org/10.1073/pnas.0509498103

Harmsen, J., Roes, A., Patel M. 2013. The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios, Energy, Elsevier, Vol. 50. https://doi.org/10.1016/j.energy.2012.12.006

Jahanshahi, S., 2006. Assessing the environmental Impact of metal production processes, Journal of Cleaner Production, October, UNSW.

John D.A., editor. 2010. Porphyry Copper Deposit Model. Chapter B of Mineral Deposit Models for Resource Assessment2010. Porphyry Copper Deposit Model. Scientific Investigations Report 2010-5070-B.

Kesler S.E. 2007. Mineral Supply and Demand into the 21st Century. Deposit Modeling, Mineral Resources Assessment and their Role in Sustainable Development. p.55-62. USGS Circular 1294.

Kraft, J. 1978. On the Relationship Between Energy and GNP, Journal of Energy and Development, 3, pp. 401-403.

Krauze E. 2016. Personas e Ideas, Penguin Random House, Méjico D.F. Lambert I.B. (2001) Mining and sustainable development: considerations for minerals supply. Group Manager, National Projects and Advice. Australian Geological Survey Organization. Natural Resources Forum, JNRF.

Lin, B. y Liu, C. 2016. Why is electricity consumption inconsistent with economic growth in China?, Energy Policy Volume 88, January 2016, pp. 310-316. https://doi.org/10.1016/j.enpol.2015.10.031

Lydon J.W. 1984. Ore deposit models. Volcanogenic massive sulphide deposits. Geoscience Canada 11(4) p. 95-202.

McGowan R.R., Roberts S., Foster R.P., Boyce A.J., Coller D. 2003. Origin of the copper-cobalt deposits of the Zambian Copperbelt: An epigenetic view from Nchanga, Geology 31 (6), p. 497-500. https://doi.org/10.1130/0091-7613(2003)031<0497:OOTCDO>2.0.CO;2

McKinsey Global Institute. 2017. Beyond the supercycle: How technology is reshaping resources ining Journal. 2010. Exploration Special. 2010. The search for metals and minerals.

Mosier. D.L., Berger V.I., and Singer D.A. 2009. Volcanogenic Massive Sulfide Deposits of the World- Open-File Report 2009-1034. Database and Grade and Tonnage Models. U.S. Geological Survey.

Moreno S.A. 2006. Valoración de las cadenas productivas de la minería metálica global, usando herramientas innovadoras de gestión ambiental. Tesis Doctoral: Departamento de Ingeniería Geológica de la UPM.

Moreno S.A. y Espi J.A. 2007. Introducción al uso de las Herramientas de Gestión Ambiental aplicadas a los Recursos Naturales no renovables. Master Int. Aprovechamiento Sostenible de los Recursos Minerales. Red Desir. Programa Alfa. OEI.

Mudd, G. M. 2009. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future. Research Report No RR5, Department of Civil Engineering, Monash University and Mineral Policy Institute, Revised - April 2009.

Nooten G.A. 2007. Sustainable Development and Nonrenewable Resources-A Multilateral perspective. Mineral Resources Assessment and Their Role in Sustainable Development. p.35-40. USGS Circular 1294.

Northey S., Mohrb S., Mudda G.M., Wenga Z. and Giurcobet D. 2014. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resources, Conservation and Recycling 83 Elsevier (2014) pp.190-201. https://doi.org/10.1016/j.resconrec.2013.10.005

PwC. 2016. Mine 2016. Slower, lower… but not defeated. www.pwc.com

PwC, 2017. Mine 2017. Stop. Think… Act. www.pwc.com

Rufael Y. 2014. Electricity consumption and economic growth in transition countries: A revisit using bootstrap panel Granger causality analysis Author links open overlay panel, Energy Economics, Volume 44, July 2014, pp. 325-330. https://doi.org/10.1016/j.eneco.2014.04.019

Schodde R. 2010. MEMS Conference Mineral and Metal Markets over the Long Term, Joint program with the SME annual meeting in Phoenix.

Sheng-Tung, C. et al. 2007. The relationship between GDP and electricity consumption in 10 Asian countries, Energy Policy, Volume 35, Issue 4, pp. 2611-2621. https://doi.org/10.1016/j.enpol.2006.10.001

Singer D.A. 1975. Geology and resources of copper deposits. Washington. US Geological Survey Skinner B.J. 1976. A second iron age ahead? American Scientist 64 May-June 1976. pp 258-269.

Tilton, J. 2001. Mining, Minerals and Sustainable Development, IIED.

Tilton J.E. and Guzmán J.I., 2017. Mineral Economics and Policy. Editorial Advisers Press. 255p. https://doi.org/10.4324/9781315733708

Tilton J.E. 2001. MMSD. N 14 Depletion and the Long-run Availability of Mineral Commodities. Colorado School of Mines. IIED. March 2001.

Tilton, J.E. 2001. Depletion and the Long-run Availability of Mineral Commodities. Mining, Minerals and Sustainable Development, 14.

Tilton, J.E., and G. Lagos. 2007. Assessing the long-run availability of copper, Resources Policy, Vol. 32, pp. 19-23. https://doi.org/10.1016/j.resourpol.2007.04.001

USGS, 2008. Porphyry Copper deposit models USGS.

USGS. 2014. USGS regional copper resource assessments, http://minerals.usgs.gov/global

U.S. Geological Survey. 2017. Mineral Commodity Summaries. Preliminary Model of Porphyry Copper Deposits, January 2017. U.S. Geological Survey. Open-File Report 2008-1321

Vázquez F. 2012. Manual de yacimientos minerales. U.D. Proyectos. ETSI Minas-UPM. Madrid.

Weizsäcker E. 2014. Decoupling 2: technologies, opportunities and policy op tions, Nairobi, (UNEP). https://doi.org/10.1007/978-3-319-03662-5_19

Wellmer F.W. and Becker-Platen J. D. 2002. Sustainable development and the exploitation of mineral and energy resources: a review. Int. J Earth Sci (Geol Rundsch) (2002) 91:723. https://doi.org/10.1007/s00531-002-0267-x

Wellmer F.W., Dieter J.B. 2007. Global Nonfuel Mineral Resources and Sustainability. Proceedings for a Workshop on Deposit Modeling, Mineral Resources Assessment and Their Role in Sustainable Development. p.1-16. USGS Circular 1294.

Descargas

Publicado

2019-03-30

Cómo citar

de la Torre, L., & Espí, J. A. (2019). Las razones geológicas de la minería del cobre. Boletín Geológico Y Minero, 130(1), 133–159. https://doi.org/10.21701/bolgeomin.130.1.009

Número

Sección

Artículos