Quantitative Risk Assessment of Environmental Hazards Generated by a Tailings Embankment: case study Cabeço do Pião, Portugal

Authors

  • A. Fiúza Centro de Recursos Naturais e Ambiente (CERENA), Faculty of Engineering, University of Porto
  • A. Leite Centro de Recursos Naturais e Ambiente (CERENA), Faculty of Engineering, University of Porto
  • M. Vila Centro de Recursos Naturais e Ambiente (CERENA), Faculty of Engineering, University of Porto
  • M.L. Dinis Centro de Recursos Naturais e Ambiente (CERENA), Faculty of Engineering, University of Porto
  • A. Futuro Centro de Recursos Naturais e Ambiente (CERENA), Faculty of Engineering, University of Porto
  • J. Gois Centro de Recursos Naturais e Ambiente (CERENA), Faculty of Engineering, University of Porto
  • J. Figueiredo Centro de Recursos Naturais e Ambiente (CERENA), Faculty of Engineering, University of Porto

DOI:

https://doi.org/10.21701/bolgeomin.132.4.006

Keywords:

environmental risk assessment, tailings embankmentment, arsenic, geochemistry

Abstract


The Panasqueira mine is a world-class tungsten mine and probably one of the most important in Europe, having been continuously in operation since 1898. Between 1927 and 1996, the ore was fully or partially processed in a processing plant located on the left bank of the Zêzere River. The tailings were stored along the bank, in an extension of about 1.5 km. The fine particles, locally known as ‘sludge’, were stored in a self-constructed embankment located on a steep hillside. The current average slope is about 36°. The sludge has high concentrations of some heavy metals (Cu, Zn, W and Cd) but has a particularly high concentration in arsenic (about 15%). This tailings storage was not included in the National Plan for Rehabilitation of Abandoned Mines, despite presenting a high environmental risk.
A quantitative environmental risk assessment characterises this situation, considering two possible alternatives: the current state with continuous release of contaminants or, alternatively, the situation that would arise from an eventual collapse of the storage embankment. In the first situation, we used a classical methodology of risk assessment to estimate the concentrations of arsenic in the affected compartments using a conservative exposure scenario and inferring the doses to which the local population is subjected. These doses are compared with reference acceptable values. In the second situation, the creation of a dispersed source of contamination encompasses a much higher dispersion area, a larger population and more expensive rehabilitation costs.

Downloads

Download data is not yet available.

References

Albuquerque T., Antunes I., Dinis M.L., Futuro A., Góis J., Leite A., Vila M., Figueiredo J., Fiúza A. 2017, "Improving Resource Efficiency and Minimize Environmental Footprint - a case study preliminary results", Mine Water and Circular Economy IMWA 2017, Lappeenranta, Finland, International Conference. 6 pages; http://hdl.handle.net/1822/48396.

ATSDR (Agency for Toxic Substances and Disease Registry), Public Health Assessment Guidance Manual 2005 Update.

Ávila, P.F., Ferreira da Silva, E., Candeias 2017. Environmental Geochemestry and Health, Issue 39, 565-589. https://doi.org/10.1007/s10653-016-9834-0 PMid:27222160

Brown, S. 1985. Quantitative Risk Assessment of Environmental Hazards. Annual Review of Public Health. (6), 247-267. https://doi.org/10.1146/annurev.publhealth.6.1.247 PMid:3994814

Bundschuh, J., Carerera A.P., Litter M. I. 2007, Distribución del Arsénico en las Regiones Ibérica e Iberoamericana, Iberoarsan.

Candeias, Cª., Melo R.a, Ávila, P.F., Ferreira da Silva E., Salgueiro A.R., Teixeira, J.P. 2014. Heavy metal pollution in mine-soil-plant system in S. Francisco de Assis-Panasqueira mine (Portugal). Applied Geochemistry 44, 12-26. https://doi.org/10.1016/j.apgeochem.2013.07.009

Candeias C.b, Silva E., Ávila P., Coelho P., Teixeira J. 2014. Mining activities in Panasqueira area: Impact and threats in ecosystems and human health in rural communities, Comunicações Geológicas 101, Especial II, 973-976, ISSN: 0873-948X; e-ISSN:1647-581X.

Candeias C.c, Silva E., Paula F. Ávila and Teixeira J. 2014. Identifying Sources and Assessing Potential Risk of Exposure to Heavy Metals and Hazardous Materials in Mining Areas: The Case Study of Panasqueira Mine (Central Portugal) as an Example, Geo-Sciences, 4, 240-268. https://doi.org/10.3390/geosciences4040240

Candeias C., Ávila P.F., da Silva, E.F., et al. 2015. Water-Rock Interaction and Geochemical Processes in Surface Waters Influenced by Tailings Impoundments: Impact and Threats to the Ecosystems and Human Health in Rural Communities (Panasqueira Mine, Central Portugal). Water Air & Soil Pollution, 226: 23. https://doi.org/10.1007/s11270-014-2255-8

Codling E., Chaney R. and Green C.E. 2016. Accumulation of Lead and Arsenic by Potato Grown on Lead- Arsenate-Contaminated Orchard Soils. Communications in Soil Science and Plant Analysis, 47:6, 799-807. https://doi.org/10.1080/00103624.2016.1146754

Coastech Research Inc. 1989. Investigation of Prediction techniques for Acid Mine Drainage. MEND Project 1.16.1a. Canada Center for Mineral and Energy Technology, Energy, Mines, and Resources Canada. 61 pages

Comité Européen de Normalisation, EN 1097-4 2008. Tests for Mechanical and Physical Properties of Aggregates - Part 4: Determination of the Voids of Dry Compacted Filler

Dove PM, Rimstidt JD 1985. The solubility and stability of scorodite, FeAsO42H2O. American Mineralogist 70, 838-844.

FAO/WHO, 2012. Food Additives and Contaminants. Codex Alimentarius Commission. Joint FAO/WHO Food Standards Programme 2001, ALINORM 01/12A 1-289.

Ferreira R., Ensinas M., Canelas R., Conde D., Ferreira E. 2012. Simulação Matemática de Sedimentos e da Qualidade da Água do Rio Zêzere entre Silvares e a Captação da EPAL na Albufeira de Castelo do Bode, CEHI DRO - Instituto Superior Técnico, UTL.

Ferreira da Silva E., Ávila P.F., Salgueiro A.R., Candeias C., Pereira H.G 2013. Quantitative-spatial assessment of soil contamination in S. Francisco de Assis due to mining activity of the Panasqueira mine (Portugal). Environmental Science and Pollution Research, 20, 7534-7549. https://doi.org/10.1007/s11356-013-1495-2 PMid:23370848

Figueiredo J., Vila M.C., Góis J., Pavani Biju B., Futuro A., Martins D., Dinis M.L., Fiúza A. 2019. Bi-level depth assessment of an abandoned tailings dam aiming its reprocessing for recovery of valuable metals. Minerals Engineering 133, 1-9. https://doi.org/10.1016/j.mineng.2018.12.016

Figueiredo J.,Vila M.C., Fiúza A., Góis J., Futuro A., Dinis M.L., Martins D. 2019. A holistic approach in re-mining old tailings deposits for the supply of critical metals: a Portuguese case. Minerals 9, 638. https://doi.org/10.3390/min9100638

Fiuza A., Futuro A, Guimarães M. 2014. Arsenic Sorption by Iron-Based Sorbents (IBS). One Century of the Discovery of Arsenicosis in Latin America (1914-2014), Arsenic in the Environment, 657-661. CRC Press Taylor and Francis Group, ISSN: 2154-6568. https://doi.org/10.1201/b16767-246

Fjeld R., Eisenberg N., Compton K. 2007. Quantitative Environmental Risk Analysis For Human Health. John Wiley & Sons, Inc. https://doi.org/10.1002/0470096209 PMCid:PMC2564788

Fowler B.A., Selene C.H., Chou J., Robert, Jones L., Dexter, Sullivan Jr W., Chen C.J. 2015, Handbook on the Toxicology of Metals (Fourth Edition), Chapter 28 - Arsenic, Volume II, 581-624, Academic Press. https://doi.org/10.1016/B978-0-444-59453-2.00028-7

Franco A., Vieira R., Bunting R. 2014, The Panasqueira Mine at a Glance, International Tungsten Industry Association, Newsletter June 2014.

Gama D., 2002. Geotechnical and laboratory study of the tailings in the River Zêzere waste heap. Beralt tin and wolfram report, Lisbon, Portugal:9.

Góis J., Dinis M.L., Soeiro J., Vila C., Fiúza A., Leite A., Futuro A., Figueiredo J., Martins D. 2018. Circular statistical models in the studies of the atmospheric dispersion of particles from mining tailings dams. Fourth International Symposium on Mining Safety Science and Engineering, Beijing.

Gonçalves A. 2014, Alterações Ambientais e Riscos Associados à Exploração Mineira no Médio Curso do Rio Zêzere. O Caso das Minas da Panasqueira. Doctoral Thesis, Universidade de Coimbra.

Grangeia C., Ávila P., Matias M., Ferreira da Silva E. 2009. An integrated investigation of the Rio tailings - Panasqueira mine (Centre Portugal). LNEG. http://hdl.handle.net/10400.9/767, 2009

Granjeia C., P. Ávila, M. Matias, Silva E. 2011. Mine tailings integrated investigations: The case of Rio tailings (Panasqueira Mine, Central Portugal), Engineering Geology 123, 359-372. https://doi.org/10.1016/j.enggeo.2011.10.001

Haque M., Hazrat A., Tuhin S. R., Masum S. and Chowdhury I. 2015. Yield reduction and arsenic accumulation in potatoes (Solanum tuberosum L.) in an arsenic contaminated soil. Journal of Plant Sciences, Volume 3, Issue 1, 31-44. https://doi.org/10.15446/agron.colomb.v33n3.51474

Hoang, K. T. 1992. Dermal Exposure Assessment: Principles and Applications. U.S. Environmental Protection Agency.

Iwasa, Y., & Aya, S. 1991. Predicting longitudinal dispersion coefficient in open-channel flows. Proceedings of the international symposium on environmental hydraulics, Hong Kong, 505-510.

LaGrega M., Buckingham P., Evans Jeffrey 1984. Hazardous Waste Mangement. McGraw-Hill International Editions.

Lanhade K.R. 2013, Assessment of Heavy Metal Contamination in Vegetables Grown in and Around Nashik City, Maharashtra State, India. IOSR Journal of Applied Chemistry (IOSR-JAC), ISSN: 2278-5736. Volume 5, Issue 3(Sep. -Oct. 2013), pp 09-14. https://doi.org/10.9790/5736-0530914

MacLean K.S. and Langille W. M. 1981. Arsenic In Orchard And Potato Soils And Plant Tissue. Plant and Soil 61: 413. https://doi.org/10.1007/BF02182021

Mackay D. 2001. Multimedia Environmental Models: The Fugacity Approach. Lewis Publishers, 2nd Edition. https://doi.org/10.1201/9781420032543

Major J.J. 1978. Hindered settling. In: Middleton G. V.In: Church M.J., Coniglio M., et al. (ed.) Encyclopedia of Sediments and Sedimentary Rocks. Springer.

Marta I.L, Cortina J.L., Fiúza A., Futuro A. and Tsakiroglou C 2014. In-situ technologies for groundwater treatment: the case of arsenic, In: Jochen Bundschuh et al. (ed.) In-Situ Remediation of Arsenic-Contaminated Sites. CRC Press, ISBN 9780415620857

Minasny, Mcbratney A.B., Rough O.M., Jacquier D. 2011. Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science, October 2011, 62, 728- 732. https://doi.org/10.1111/j.1365-2389.2011.01386.x

National Research Council 1983. Risk Assessment in the Federal Government: Managing the Process. National Academy Press, Washington D.C.

Noronha F., Dória A., Dubessy J., Charoy B. 1992. Characterisation and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal. Mineralium Deposita, 27, 72-79. https://doi.org/10.1007/BF00196084

Regulamento (UE) N.o 1357/2014 da Comisión. Diario Oficial de la Unión Europea. Remine, Improve Resource Efficiency and Minimize Environmental Footprint 2019. Relatório Final - Descrição detalhada das actividades desenvolvidas. Unpublished Report. Cerena Research Centre, FEUP.

Reis C. 1971. As Minas da Panasqueira, Boletim de Minas, Lisboa, 8 (I) Jan.-Mar., 3-44.

Rosário L. 2004. Indicadores de Desertificação para Portugal Continental. Direcção-Geral dos Serviços Florestais.

Sá C., Naique, R. A., Nobre, Edmundo 1999. Mina da Panasqueira - 100 anos de história mineira,. Boletim de Minas nº 36 (1), 3-22.

Salom, Andreas 2017. Remining and Restructure of a Tailing Deposit - Technical Feasibility. Master Dissertation in Mining and Geo-Environmental Engineering. University of Porto, Faculty of Engineering. URL: http://hdl.handle.net/10216/105289.

Samanta G., Sharma R., Roychowdhury T., Dipankar C. 2004. Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. The Science of the total environment. 326. 33-47.. https://doi.org/10.1016/j.scitotenv.2003.12.006 PMid:15142763

Silva N.M. 2010. Observações, Reflexões e Recomendações em Torno da Escombreira do Cabeço do Pião, Silvares, Fundão. Dissertation in Mining and Geo-Environmental Engineering . FEUP.

Thibodeaux L.J.. Environmental chemodynamics: Movement of chemicals in air, water and soil (2nd edition) 1996. John Wiley & Sons, Inc, ISBN: 0-471-61295-2

Trapp S., Matthies M. 1997. Chemodynamics and Environmental Modeling. Springer, ISBN: 3540630961 https://doi.org/10.1007/978-3-642-80429-8

WHO 2001. Environmental health criteria 224: Arsenic and arsenic compounds, 2nd Edition World Health Organization, Geneve, 186 p.

US EPA 2013. Integrated Risk Information System, Latest non-radioactive assessment list in Excel.

US EPA 2014. Framework for Human Health Risk Assessment to Inform Decision Making, 76 pages.

US EPA 1997, National Center for Environmental Assessment Office of Research and Development. Exposure Factors Handbook.

U.S. EPA 2001, Arsenic Exposure and Health Effects, Revised/edited by Ann Morgan

U.S. EPA 2014. IRIS Toxicological Review of Inorganic Arsenic (Preliminary Assessment Materials, 2014).

U.S. Environmental Protection Agency, Washington, DC, EPA/630/R-14/101.

Wagner J.O., Mathies 1996. Guideline for Selection and Application of Fate and Exposure Models, Environmental Science and Pollution Research 3(1), 47-51. https://doi.org/10.1007/BF02986816 PMid:24234890

Downloads

Published

2021-12-30

How to Cite

Fiúza, A. ., Leite, A., Vila, M., Dinis, M. ., Futuro, A. ., Gois, J., & Figueiredo, J. . (2021). Quantitative Risk Assessment of Environmental Hazards Generated by a Tailings Embankment: case study Cabeço do Pião, Portugal. Boletín Geológico Y Minero, 132(4), 465–486. https://doi.org/10.21701/bolgeomin.132.4.006

Issue

Section

Articles