Paleostress evolution during the exhumation of high-P marbles, Samaná Complex, northern Hispaniola

Authors

  • F. J. Fernández Departamento de Geología, Universidad de Oviedo
  • I. Rodríguez Departamento de Geología, Universidad de Oviedo
  • J. Escuder-Viruete Instituto Geológico y Minero de España
  • A. Pérez-Estaún Instituto de Ciencias de la Tierra “Jaume Almera” CSIC
  • E. Mariani Department of Earth, Ocean and Ecological Sciences, Liverpool University
  • D. Prior Geology Department, University of Otago

DOI:

https://doi.org/10.21701/bolgeomin.128.3.004

Keywords:

exhumation, subduction, fluid pressure, paleopiezometry, microstructure, cathodoluminescence, cataclasis, rheology, embrittlement

Abstract


The marble of the Samaná complex presents a widespread foliation formed during its exhumation following a general decompressive strain path from high pressure (2.0>P>0.7 GPa) and low temperature (<500 ºC) conditions. The foliation is plano-linear and blastomylonitic. Deformation distribution is highly heterogeneous. Calcite preferred orientation is poor, even though the marble has a well-defined tectonic fabric. The blastomylonitic fabric is masking an earlier tectonic fabric. Cathodoluminescence images reveal that intense fracturing formed prior to foliation development in the marbles. The thermodynamic modelling of mineral phase transformations during prograde metamorphism indicate an increase in water content (1.2%<w.t.H2O<1.8%) that may have involved an increase in fluid pressure and triggered rock embrittlement and subsequent exhumation. Stress drops after a cataclastic event, as well as grain-size reduction by abrasion, may have activated dissolution-precipitation processes along cataclastic bands. Differential stress |σ13| increased as exhumation progressed after the cataclastic event. Estimates of paleostress based on calcite mechanical twinning indicate values of |σ13| >350 MPa during deformation. In contrast, mean flow stress during grain-boundary migration is estimated in |σ13| <150 MPa. The high paleostress record and microstructures of the marble are consistent with the high exhumation rate calculated (>110 MPa Ma-1). All of these data suggest that exhumation always occurred near the brittle-ductile regime of deformation.

Downloads

Download data is not yet available.

References

Austin, N.J. and Evans, B., 2007. Paleowattmeters: a scaling relation for dynamically recrystallized grain size. Geology 35, 343-346. https://doi.org/10.1130/G23244A.1

Austin, N., Evans, B., Rybacki, E. and Dresen, G., 2014. Strength evolution and the development of crystallographic preferred orientation during deformation of two-phase marbles. Tectonophysics 631, 14-28. https://doi.org/10.1016/j.tecto.2014.04.018

Barnhoorn, A., Bystricky, M., Burlini, L. and Kunze, K., 2004. The role of recrystallisation on the deformation behaviour of calcite rocks: large strain torsion experiments on Carrara marble. Journal of Structural Geology 26 (5), 885-903. https://doi.org/10.1016/j.jsg.2003.11.024

Beaumont, C., Jamieson, R.A., Nguyen, M.H. and Lee, B., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focus surface denudation. Nature 414, 738-742. https://doi.org/10.1038/414738a

Beaumont, C., Jamieson, R.A., Butler, J.P. and Warren, C.J., 2009. Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth and Planetary Science Letters 287, 116-129. https://doi.org/10.1016/j.epsl.2009.08.001

Bebout, G.E., 1991. Geometry and mechanics of fluid-flow at 15 to 45 km depth in an early Cretaceous accretionary complex. Geophysical Research Letters 18, 923-926. https://doi.org/10.1029/91GL00949

Bestmann, M., Kunze, K. and Matthews, A., 2000. Evolution of a calcite marble shear zone complex on Thassos Island, Greece: microstructural and textural fabrics and their kinematic significance. Journal of Structural Geology 22, 1789-1807. https://doi.org/10.1016/S0191-8141(00)00112-7

Blenkinsop T. G., 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics 136, 59-86. https://doi.org/10.1007/BF00878888

Billi, A., 2007. On the extent of size range and power law scaling for particles of natural carbonate fault cores. Journal of Structural Geology 29, 1512-1521. https://doi.org/10.1016/j.jsg.2007.06.007

Blein, O., Guillot, S., Lapierre, H., Mercier de Lépinay, B., Lardeaux, J.M., Millan-Trujillo, G., Campos, M. and Garcia, A., 2003. Geochemistry of the Mabujina complex, central Cuba: implications on the Cuban Cretaceous arc rocks. The Journal of Geology 111, 89-110. https://doi.org/10.1086/344666

Brander, L., Svahnberg, H. and Piazolo, S., 2012. Brittle-plastic deformation in initially dry rocks at fluid-present conditions: transient behaviour of feldspar at mid-crustal levels. Contribution to Mineralogy and Petrology 163, 403-425. https://doi.org/10.1007/s00410-011-0677-5

Burkhard, M., 1993. Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. Journal of Structural Geology 15, 351-368. https://doi.org/10.1016/0191-8141(93)90132-T

Burov, E. and Yamato, Ph., 2008. Continental plate collision, P-T-t-z conditions and unstable vs. stable plate dynamics: insights from thermo-mechanical modelling. Lithos 103, 178-204. https://doi.org/10.1016/j.lithos.2007.09.014

Burov, E., Francois, T., Agard, P., Le Pourhiet, L., Meyer, B., Tirel, C., Lebedev, S., Yamato, P. and Brun, J.-P., 2014a. Rheological and Geodynamic Controls on the Mechanisms of Subduction and HP/UHP Exhumation of Crustal Rocks during Continental Collision: Insights from Numerical Models. Tectonophysics 631, 212-250. https://doi.org/10.1016/j.tecto.2014.04.033

Burov, E., Francois, T., Yamato, P. and Wolf, S., 2014b. Mechanisms of continental subduction and exhumation of HP and UHP rocks. Gondwana Research 25, 464-493. https://doi.org/10.1016/j.gr.2012.09.010

Byerlee, J.D. (1978): Friction of rocks. Pure and Applied Geophysics 116, 615-626. https://doi.org/10.1007/BF00876528

Catlos, E.J. and Sorensen, S.S., 2003. Phengite-based chronology of K- and Ba-rich fluid flow in two paleosubduction zones. Science 299, 92-95. https://doi.org/10.1126/science.1076977

Cloos, M., 1982. Flow mélanges: numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California. Geological Society of American. Bulletin 93, 330-345. https://doi.org/10.1130/0016-7606(1982)93<330:FMNMAG>2.0.CO;2

Cloos, M. and Shreve, R.L., 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction and subduction erosion at convergent plate margins: 1. Background and description. Pure Applicate Geophysics 128, 455-500. https://doi.org/10.1007/BF00874548

Cloos, M. and Shreve, R.L., 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure Applicate Geophysics 128, 501-545. https://doi.org/10.1007/BF00874549

De Capitani, C., 1994. Gleichgewichts-Phasendiagramme: Theorie und Software. Beihefte zum Jauhrestagung der Deutschen Mineralogischen Gesellschaft, European Journal of Mineralogy 72, 6-48.

Draper, G. and Lewis, J.F., 1991. Geologic map of the Central Dominican Republic (1:150,000). In: Mann, P., Draper, G., Lewis, J.F. (Eds.), Geological and Tectonic Development of the North American-Caribbean Plate Boundary in Hispaniola. Geological Society America Special Paper, vol. 262. Plates. https://doi.org/10.1130/SPE262-p1

Draper, G. and Nagle, F., 1991. Geology, structure and tectonic development of the Río San Juan Complex, northern Dominican Republic. In: Mann, P., Draper, G., Lewis, J. (Eds.), Geologic and Tectonic Development of the North America-Caribbean Plate Boundary Zone in Hispaniola. Geological Society America Special Paper, vol. 262, 77-95. https://doi.org/10.1130/SPE262-p77

Draper, G., Mann, P. and Lewis, J.F., 1994. Hispaniola. In: Donovan, S.K., Jackson, T.A. (Eds.), Caribbean Geology: An introduction. University of the West Indies Publishers Association, Kingston, Jamaica, 129-150.

Escuder-Viruete, J. and Pérez-Estaún, A., 2006. Subduction-related P-T path for eclogites and garnet glaucophanites from the Samaná Peninsula basement complex, northern Hispaniola. International Journal of Earth Sciences 95, 995-1017. https://doi.org/10.1007/s00531-006-0079-5

Escuder-Viruete, J., Pérez-Estaún, A., Weis, D. and Friedman, R., 2009. Geochemical characteristics of the Río Verde Complex, Central Hispaniola: implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc. Lithos 114, 168-185. https://doi.org/10.1016/j.lithos.2009.08.007

Escuder-Viruete, J., Pérez-Estaún, A., Booth-Rea, G. and Valverde-Vaquero, P., 2011a. Tectonometamorphic evolution of the Samaná complex, northern Hispaniola: implications for the burial and exhumation of high-pressure rocks in a collisional accretionary wedge. Lithos 125, 190-210. https://doi.org/10.1016/j.lithos.2011.02.006

Escuder-Viruete, J., Pérez-Estaún, A., Gabites, J. and Suárez-Rodríguez, A., 2011b. Structural development of a high-pressure collisional accretionary wedge: the Samaná complex, northern Hispaniola. Journal of Structural Geology 33, 928-950. https://doi.org/10.1016/j.jsg.2011.02.006

Escuder-Viruete, J., Friedman, R., Castillo-Carrión, M., Jabites, J. and Pérez-Estaún, A., 2011c. Origin and significance of the ophiolitic high-P mélanges in the northern Caribbean convergent margin: insights from the geochemistry and large-scale structure of the Río San Juan metamorphic complex. Lithos 127, 483-504. https://doi.org/10.1016/j.lithos.2011.09.015

Escuder-Viruete, J., Valverde-Vaquero, P., Rojas-Agramonte, Y., Gabites, J. and Pérez-Estaún, A., 2013. From intra-oceanic subduction to arc accretion and arc-continent collision: Insights from the structural evolution of the Río San Juan metamorphic complex, northern Hispaniola. Journal of Structural Geology 46, 34-56. https://doi.org/10.1016/j.jsg.2012.10.008

Ferrill, D.A., Morris, P.A., Evans, M.A., Burkhard, M., Groshong Jr. R. H. and Onasch, C.M., 2004. Calcite twinning morphology: a low-temperature deformation geothermometer. Journal of Structural Geology 26, 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028

Fernández, F.J., Brown, D., Álvarez-Marrón, J., Prior, D.J. and Pérez-Estaún, A., 2004. Microstructure and lattice preferred orientation of calcite mylonites at the base of the southern Urals accretionary prism. Journal of the Geological Society, London 161, 67-79. https://doi.org/10.1144/0016-764903-027

Fernández F.J., Menéndez-Duarte, R., Aller, J. and Bastida, F., 2005. Application of geographical information system to shape-fabric analysis. In: Microstructural evolution and physical properties in high-strain zones. D. Bruhn and L. Burlini (Eds.), Geological Society of London Special Publications 245, 409-420. https://doi.org/10.1144/GSL.SP.2005.245.01.20

Fernández F.J., Rutter, E.H., Prior, D. and Gracía-Cuevas, C., 2011. Análisis e interpretación de fábricas tectónicas en rocas carbonatadas cálcicas. Revista de la Sociedad Geológica de España 24 (1-2), 9-30.

Gerya, T.V., Stoeckhert, B. and Perchuk, A.L., 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel - a numerical simulation. Tectonics 21, 6-1-6-19. https://doi.org/10.1029/2002TC001406

Guillot, S., Hattori, K.H., Agard, P., Schwartz, S. and Vidal, O., 2009. Exhumation processes in oceanic and continental subduction contexts: a review. In: Lallemand, S., Funiciello, F. (Eds.), Subduction Zone Geodynamics. Springer, Berlin, 175-205. https://doi.org/10.1007/978-3-540-87974-9_10

Hacker, B.R., Peacock, S.M., Abers, G.A. and Holloway, S.D., 2003. Subduction factory: 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research, Solid Earth 108, 20. (NO. B1, 2030). https://doi.org/10.1029/2001JB001129

Hattori, K.H., Guillot, S., Saumur, B.-M., Tubrett, M.N., Vidal, O. and Morfin, S., 2010. Corundum-bearing garnet peridotite from northern Dominican Republic: a metamorphic product of an arc cumulate in the Caribbean subduction zone. Lithos 114, 437-450. https://doi.org/10.1016/j.lithos.2009.10.010

Isacks, B., Oliver, J. and Sykes, L.R., 1968. Seismology and the new global tectonics. Journal of Geophysical Research 73(18), 5855-5899. https://doi.org/10.1029/JB073i018p05855

Jolivet, L., Daniel, J.M., Truffert, C. and Goffé, B., 1994. Exhumation of deep crustal metamorphic rocks and crustal extension in back-arc regions. Lithos 33, 3-30. https://doi.org/10.1016/0024-4937(94)90051-5

Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.M. and Hisao, I., 2007. Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoids. Journal of Structural Geology 29, 1282-1300. https://doi.org/10.1016/j.jsg.2007.04.003

Krebs, M., Maresch, W.V., Schertl, H.-P., Baumann, A., Draper, G., Idleman, B., Münker, C. and Trapp, E., 2008. The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103, 106-137. https://doi.org/10.1016/j.lithos.2007.09.003

Krebs, M., Schertl, H.-P., Maresch, W.V. and Draper, G., 2011. Mass flow in serpentinite hosted subduction channels: P-T-t path patterns of metamorphic blocks in the Rio San Juan mélange (Dominican Republic). Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2011.01.011

Kruhl, J.H., 1996. Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology 14, 581-589. https://doi.org/10.1046/j.1525-1314.1996.00413.x

Law, R.D., Searle, M.P. and Simpson, R.L., 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet, Journal of the Geological Society, London 161, 305-320. https://doi.org/10.1144/0016-764903-047

Lister, G.S., Paterson, M.S. and Hobbs, B.E., 1978. The simulation of fabric development in plastic deformation and its application to quartzite: the model. Tectonophysics 45 (2-3), 107-158. https://doi.org/10.1016/0040-1951(78)90004-5

Mancktelow, N., 1995. Non lithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks. Journal of Geophysical Research 100, 571-583. https://doi.org/10.1029/94JB02158

Mann, P., Calais, E., Ruegg, J.C., De Mets, C., Jansma, P.E. and Mattioli, G.S., 2002. Oblique collision in the northeastern Caribbean from GPS measurements and geological observations. Tectonics 21, 1057-1082. https://doi.org/10.1029/2001TC001304

Neill, I., Gibbs, J.A., Hastie, A.R. and Kerr, A.C., 2010. Origin of the volcanic complexes of La Désirade, Lesser Antilles: implications for tectonic reconstruction of the Late Jurassic to Cretaceous Pacific-proto-Caribbean margin. Lithos 120, 407-420. https://doi.org/10.1016/j.lithos.2010.08.026

Ota, T. and Kaneko, Y., 2010. Blueschists, eclogites, and subduction zone tectonics: insights from a review of Late Miocene blueschists and eclogites, and related young high-pressure metamorphic rocks. Gondwana Research 18, 167-188. https://doi.org/10.1016/j.gr.2010.02.013

Peacock, S.M., 1990. Numerical-simulation of metamorphic pressure-temperature-time paths and fluid production in subducting slabs. Tectonics 9, 1197-1211. https://doi.org/10.1029/TC009i005p01197

Peacock, S.M., 1996. Thermal and petrologic structure of subduction zones (overview). In: Bebout, G.E., Scholl, D.W., Kirby, S.H., Platt, J.P. (Eds.), Subduction Top to Bottom. American Geophysical Union, Washington, 119-134. https://doi.org/10.1029/GM096p0119

Pindell, J.L. and Kennan, L., 2009. Tectonic evolution of the Gulf ofMexico, Caribbean and northern South America in the mantle reference frame: an update. In: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.). The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications 328, 1-55. https://doi.org/10.1144/SP328.1

Pieri, M., Burlini, L., Kunze, K., Stretton, I. and Olgaard, D.L., 2001a. Rheological and microstructural evolution of Carrara Marble with high shear strain; results from high temperature torsion experiments. Journal of Structural Geology 23, 1393-1413. https://doi.org/10.1016/S0191-8141(01)00006-2

Pieri, M., Kunze, K., Burlini, L., Stretton, I. and Olgaard, D.L., 2001b. Texture development of calcite by deformation and dynamic recrystallization at 1000 K during torsion experiments of marble to large strains. Tectonophysics 330, 119-140. https://doi.org/10.1016/S0040-1951(00)00225-0

Pittarello, L., Pennacchioni, G. and Di Toro, G., 2012. Amphibolite-facies pseudotachylytes in Premosello metagabbro and felsic mylonites (Ivrea Zone, Italy). Tectonophysics 580, 43-57. https://doi.org/10.1016/j.tecto.2012.08.001

Platt, J.P., 1993. Exhumation of high-pressure rocks: a review of concepts and processes. Terra Nova 5, 119-133. https://doi.org/10.1111/j.1365-3121.1993.tb00237.x

Ranalli, G., 1995. Rheology of the Earth. Chapman and Hall, London, 413 pp.

Ring, U., Brandon, M.T., Willet, S. and Lister, G.S., 1999. Exhumation processes. In: Ring, U., Brandon, M.T., Willet, S., Lister, G.S. (Eds.), Exhumation Processes: Normal Faulting, Ductile Flow and Erosion. Special Publication Geological Society, London, 154, 1-28. https://doi.org/10.1144/GSL.SP.1999.154.01.01

Rodríguez, I., Fernández, F.J., Escuder-Viruete, J., Pérez-Estaún, A., 2017. Cataclasis relicta en los mármoles de alta presión del complejo de Samaná. Boletín Geológico y Minero, 128(3), 569-586. https://doi.org/10.21701/bolgeomin.128.3.003

Rojas-Agramonte, Y., Kröner, A., García-Casco, A., Somin, M., Iturralde-Vinent, M., Mattinson, J.M., Millán Trujillo, G., Sukar, K., Pérez Rodríguez, M., Carrasquilla, S., Wingate, M.T.D. and Liu, D.Y., 2011. Timing and evolution of Cretaceous island arc magmatism in central Cuba: implications for the history of arc systems in the northwestern Caribbean. The Journal of Geology 119, 619-640. https://doi.org/10.1086/662033

Rowe, K.J. and Rutter, E.H., 1990. Palaeostress estimation using calcite twinning: experimental calibration and application to nature. Journal of Structural Geology 12, 1-17. https://doi.org/10.1016/0191-8141(90)90044-Y

Rutter, E.H., 1976. The kinetics of rocks deformation by pressure solution. Philosophical Transaction of the Royal Society of London A 283, 203-219. https://doi.org/10.1098/rsta.1976.0079

Rutter, E.H., 1983. Pressure solution in nature, theory and experiment. Journal of the Geological Society London 140, 725-740. https://doi.org/10.1144/gsjgs.140.5.0725

Rutter, E.H., 1995. Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara marble. Journal of Geophysical Research 100(B12), 24.651-24.663. https://doi.org/10.1029/95JB02500

Rutter, E.H. and Brodie, K.H., 1992. Rheology of the lower crust. In: Fountain, D., Arculus, R., Kay, R. (Eds.), Continental Lower Crust. Elsevier, New York, 201-267.

Rutter, E.H., Casey, M. and Burlini, L., 1994. Preferred Crystallographic orientation development during the plastic and superplastic flow of calcite rocks. Journal of Structural Geology 16 (10), 1431-1446. https://doi.org/10.1016/0191-8141(94)90007-8

Rutter, E.H., Faulkner, D.R., Brodie, K.H.; Phillips, R.J. and Searle, M.P., 2007. Rock deformation processes in the Karakoram fault zone, Eastern Karakoram, Ladakh, NW India. Journal of Structural Geology 29, 1315-1326. https://doi.org/10.1016/j.jsg.2007.05.001

Rybacki, E., Evans, B., Janssen, C., Wirth, R. and Dresen, G., 2013. Influence of stress, temperature and strain on calcite twins constrained by deformation experiments. Tectonophysics 601, 20-36. https://doi.org/10.1016/j.tecto.2013.04.021

Rybacki, E., Morales, L.F.G., Naumann, M. and Dresen, G., 2014. Strain localization during high temperature creep of marble: The effect of inclusions. Tectonophysics 634, 182-197. https://doi.org/10.1016/j.tecto.2014.07.032

Schmid, S.M., Panozzo, R. and Bauer, S., 1987. Simple shear experiments on calcite rocks: rheology and microfabric. Journal of Structural Geology 9, 747-778. https://doi.org/10.1016/0191-8141(87)90157-X

Spiers, C.J. 1982. The development of deformation textures in calcite rocks. Unpublished Ph.D. Thesis, University of London.

Stipp, M. and Tullis, J., 2003. The recrystallized size piezometer for quartz. Geophysical Research Letters 30, 21, 2088. https://doi.org/10.1029/2003GL018444

Turcotte, D., 1986. Fractals and Fragmentation. Journal of Geophysical Research, 91(B2), 1921-1926. https://doi.org/10.1029/JB091iB02p01921

Ulrich S., Schulmann, K. and Casey, M., 2002. Microstructural evolution and rheological behavior of marbles deformed at different crustal levels. Journal of Structural Geology 24, 979-995. https://doi.org/10.1016/S0191-8141(01)00132-8

Van Keken, P.E., Hacker, B.R., Syracuse, E.M. and Abers, G.A., 2011. Subduction Factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research, Solid Earth 116, B01401. https://doi.org/10.1029/2010JB007922

Wada, I., Behn, M.D., Shaw, A.M., 2012. Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones. Earth Planetary Science Letters 353, 60-71. https://doi.org/10.1016/j.epsl.2012.07.025

Wassmann, S. and Stöckhert, B., 2013. Rheology of the plate interface-Dissolution precipitation creep in high-pressure metamorphic rocks. Tectonophysics 608, 1-29. https://doi.org/10.1016/j.tecto.2013.09.030

Wenk, R.H., Wenkitsubramanyan, C.W., Baker, D.W. and Turner, F.J., 1973. Preferred orientation in experimentally deformed limestone. Contribution to Mineralogy and Petrology 38, 81-114. https://doi.org/10.1007/BF00373875

Downloads

Published

2017-09-30

How to Cite

Fernández, F. J., Rodríguez, I., Escuder-Viruete, J., Pérez-Estaún, A., Mariani, E., & Prior, D. (2017). Paleostress evolution during the exhumation of high-P marbles, Samaná Complex, northern Hispaniola. Boletín Geológico Y Minero, 128(3), 587–610. https://doi.org/10.21701/bolgeomin.128.3.004

Issue

Section

Articles

Funding data

Ministerio de Economía y Competitividad
Grant numbers CGL2010-14890;CGL2011-23628