Joint use of piezometric surfaces and chemical and isotopic tracers to identify recharge areas in arid environments: Agrelo fan area, Mendoza province, Argentina

Authors

  • Pabla Natalia Tognoli Instituto de Medio Ambiente, Facultad de Ingeniería, Universidad Nacional de Cuyo
  • Daniel Emilio Martínez Instituto de Investigaciones Marinas y Costeras. CONICET. Inst. de Geología de Costas y del Cuaternario, CIC Prov. de Buenos Aires. Universidad Nacional de Mar del Plata
  • Sandra Ibáñez Instituto de Medio Ambiente, Facultad de Ingeniería, Universidad Nacional de Cuyo

DOI:

https://doi.org/10.21701/bolgeomin.132.1-2.008

Keywords:

Agrelo Fan Mendoza, conceptual model, hydrochemistry, hydrodynamic, recharge

Abstract


Although there are numerous hydrogeological papers on the Abanico de Agrelo area due to its importance from the point of view of recharge to the Mendoza Northern Basin, many uncertainties still remain to be solved. The aim of this study is to obtain new data to update and improve the conceptual model of the aquifer. For this purpose, we have carried out a desktop review of the previous data and the aquifer dynamics have been redefined. Based on this information, a hydrochemical and isotopic sampling was carried out in order to confirm the hydrogeological dynamics. Our results indicate that the main flow of the aquifer is NW-SE and that although the river is the main source of recharge, there could be other input areas. The hydrochemical data confirm this dynamic, showing a gradual enrichment of salts in the flow direction. The hydrochemical underground pattern is similar to that of the river, but it shows lower conductivity values in the nearby areas, in Cadicating a probable mixture of water from another recharge source. The resulting conceptual model considers that the hydrogeological system of the Abanico de Agrelo extends to both banks of the Mendoza River and that the river is not an edge of the aquifer itself as it works as an indirect recharge area. The existence of additional recharge sources is also proposed in this paper.

Downloads

Download data is not yet available.

References

Custodio, E. y Llamas, M. 1983. Hidrología Subterránea. Tomos I y II. Ediciones Omega, S.A. Casanova, 220. Barcelona.1157 y 2350 pp.

Crespo, S., Aranibar, J., Gomez, L., Schwikowski, M., Bruetsch, S., Cara, L., & Villalba, R. 2016. Ionic and stable isotope chemistry as indicators of water sources to the Upper Mendoza River basin, Central Andes of Argentina. Hydrological sciences journal, 62(4): 588-605. https://doi.org/10.1080/02626667.2016.1252840

Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus, 16(4), pp.436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x

Elango, L. and Kannan, R. 2007. Rock-water interaction and its control on chemical composition of groundwater. In: Dibyendu Sarkar et al.(ed). Concepts and Applications in Environmental Geochemistry. Developments in environmental science, 5, pp.229-243. https://doi.org/10.1016/S1474-8177(07)05011-5

Foster, S. y Garduño, H. 2005. Argentina: Enfoque de Gestión Integrada para la Conservación del Agua Subterránea en los Acuíferos de Mendoza. Casos Esquemáticos. GW MATE Case profile collection. Banco Mundial. 16 pp

Giaccardi, A., Aguilera, D., Grizas, P. y Tognoli, P. 2018. Determinación de la velocidad de flujo del acuífero libre utilizando oscilaciones del nivel freático, Abanico de Agrelo, Mendoza, Argentina. X Congreso Argentino de Hidrogeología, Salta. 7 pp.

Giambiagi, L., Ramos V.A., Godoy, E., Álvarez, P. y Orts, S. 2003. Cenozoic deformation and tectonic style of the Andes, between 33° and 34° South latitude. Tectonics, Vol.22(4), 1041. https://doi.org/10.1029/2001TC001354

Gómez, M.L., Aranibar,J., Wuillud,R., Rubio,C., Martinez, D.E., Soria,D., Monasterio, R., Villagra, P. and Goiran, S. 2014. Hydrogeology and hidrogeochemical modeling in phreatic aquifer of NE Mendoza, Argentina. Journal of Iberian Geology. Vol. 40(3)2014:521-538. https://doi.org/10.5209/rev_JIGE.2014.v40.n3.43302

Gonfiantini, R.1978. Standards for stable isotopes measurements in natural compounds. Nature 271:534-536 https://doi.org/10.1038/271534a0

Hernández, J., Martinis, N. y Fornero, L. 2012. Modelación Hidrológica de la Cuenca Norte de Mendoza. IT-146 CRA. Instituto Nacional del Agua, . Mendoza. 118 pp.

Hoke G., Aranibar J., Viale M., Araneo D., y Llano C. 2013. Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5-35.5°S, Geochem. Geophys. Geosyst.,14, 962-978. https://doi.org/10.1002/ggge.20045

Ibañez, S., Di Lello, F., Euillades, P., Rovira, S., Fernandez, J., Quiroga, C., Ferrer, L, Sebok, A. y Chauvet, A. 2013. Cambios en los niveles piezométricos de la zona de recarga del acuífero de la cuenca norte después del dique Potrerillos, Mendoza. CONAGUA, San Juan. Argentina.

Lis, G., Wassenaar, L.I., Hendry, M.J. 2008. High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem. 80:287-293. https://doi.org/10.1021/ac701716qPMid:18031060

Massone, H., Martinez, D., Vich, A., Quiroz Londoño, M, Trombotto, D. y Grondona, S. 2016. Snowmelt contribution to the sustainability of the irrigated Mendoza's Oasis, Argentina: an isotope study. Environ Earth Sci (2016) 75:520. 11pp. https://doi.org/10.1007/s12665-015-5141-9

Panarello, H., Dapeña, C. 1996. Mecanismos de recarga y salinización en las Cuencas de los Ríos Mendoza y Tunuyán, República Argentina. / XII Congreso Geológico de Bolivia, Tarija. 2, 1-18.

Panarello, H., Dapeña, C., García, E., Álvarez, A. 1993. Estudio isotópico e hidroquímico de los acuíferos de la Cuenca Norte mendocina, Ríos Mendoza y Tunuyán. / XII Congreso Geológico Argentino, Mendoza. 4, 197-207.

Valero, C. 1993. Cuenca hidrogeológica de Mendoza Norte. Hidrogeología del área de máxima recarga del río Mendoza. / XII Congreso Geológico Argentino, Mendoza, 4, 155-165.

Downloads

Published

2021-06-30

How to Cite

Tognoli, P. N., Martínez, D. E., & Ibáñez, S. (2021). Joint use of piezometric surfaces and chemical and isotopic tracers to identify recharge areas in arid environments: Agrelo fan area, Mendoza province, Argentina. Boletín Geológico Y Minero, 132(1-2), 77–86. https://doi.org/10.21701/bolgeomin.132.1-2.008

Issue

Section

Articles