Submarine groundwater discharge detection on the coast of Buenos Aires using 222Rn and geoelectrical methods

Authors

  • Silvina Carretero CONICET, CEIDE, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP)
  • Santiago Perdomo CONICET, CITNOBA, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA) - Facultad de Ciencias Astronómicas y Geofísicas
  • John Rapaglia Biology Department, Sacred Hear University
  • Carlos Albino Martínez Facultad de Ciencias Astronómicas y Geofísicas
  • Eduardo Kruse CONICET, CEIDE, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP)

DOI:

https://doi.org/10.21701/bolgeomin.132.1-2.016

Keywords:

Buenos Aires, coastal aquifer, electrical resistivity tomography, radon, ubmarine groundwater discharge

Abstract


Submarine groundwater discharge (SGD) is a complex hydrological process which occurs in the continent–ocean interface and plays an important role in coastal dynamics. The detection of groundwater discharge from the sandy freshwater aquifer towards the Atlantic Ocean was proposed on the western coast of Buenos Aires Province (Argentina). There are different methods used to detect SGD. In this study, 222Rn as a tracer, electrical resistivity tomography (ERT) and flow maps were used as the methodology. 222Rn activity was measured in the wells, at the beach (tidal pools and surf zone) and along a transect 200 m from the coastline where geo-electrical method was also used. Groundwater depth was measured in the wells and groundwater contour maps were made .222Rn activity in the wells varies from 16 and 173 dpm/L, at the beach the values are between 28 and 48 dpm/L and along the coastline they oscillate between 1.3 and 20.5 dpm/L. The ERT shows a high resistivity layer close to a depth of 3-4 m from the sea floor, which would indicate the presence of freshwater. Groundwater contour maps show discharge toward the continental plain to the west and toward the sea to the east. There is no precedent related to the application of these methodologies in the study area, therefore this study is of interest to increase our knowledge of the coastal hydrodynamics.

Downloads

Download data is not yet available.

References

Andersen, M.S.; Baron, L.; Gudbjerg, J.; Gregersen, J.; Chapellier D. and Jakobsen, R. 2007. Discharge of nitrate-containing groundwater into a coastal marine environment. Journal of Hydrology (336): 98-114. https://doi.org/10.1016/j.jhydrol.2006.12.023

Breier J.A.; Breier C.F. and Edmond, H.N. 2005. Detecting submarine groundwater discharge with synoptic surveys of sediment resistivity, radium, and salinity. Geophysical Research Letters, 32 (23): 1-4. https://doi.org/10.1029/2005GL024639

Burnett, W.C. and Dulaiova, H., 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity 69(1-2): 21-35. https://doi.org/10.1016/S0265-931X(03)00084-5 PMid:12860087

Burnett; W. C; Aggarwal. P. K.; Kulkarni K. M.; Aureli A.; Bokuniewicz H.; Cable J. E.; Charette M. A.; Kontar E.; Krupa S.; Loveless A.; Moore W. S.; Oberdorfer J. A.; Oliveira J.; Ozyurt N.; Povinec P.; Scholten J.; Privitera A. M.G.; Rajar R.; Ramessur R. T.; Stieglitz T.; Taniguchi M.and Turner P.V. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment: 67 (2-3): 498-543. https://doi.org/10.1016/j.scitotenv.2006.05.009 PMid:16806406

Carretero, S. and Kruse, E. 2012. Relationship between precipitation and water-table fluctuation in a coastal dune aquifer: northeastern coast of the Buenos Aires province, Argentina. Hydrogeology Journal (20): 1613-1621. https://doi.org/10.1007/s10040-012-0890-y

Carretero, S.; Kruse E. and Rojo, A. 2013a. Condiciones hidrogeológicas en Las Toninas y Santa Teresita, Partido de La Costa. In: N. González, E. Kruse, M.M. Trovatto y P. Laurencena (Editores) Temas actuales en hidrología subterránea 2013. ISBN 978-987-1985-03-6. La Plata, EDULP, pp 28-35.

Carretero, S.; Dapeña, C. and Kruse, E. 2013b. Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer in the northeastern coast of the province of Buenos Aires. Argentina. Isotopes in Environmental & Health Studies 49(3): 399-419. https://doi.org/10.1080/10256016.2013.776557 PMid:23713885

Carretero, S.; Perdomo S.; Kruse, E. and Ainchil, J. 2016. Respuesta eléctrica de la zonación química en un nivel acuífero en la costa arenosa oriental de la Provincia de Buenos Aires. In: García R. y Mariño E. (Editores) Calidad del agua subterránea. Editorial Científica Universitaria - Secretaría de Ciencia y Tecnología - Universidad Nacional de Catamarca, pp 93-100. San Fernando del Valle de Catamarca, Catamarca.

Day-Lewis, F.D.; White, E.A.; Johnson, C.D.; Lane, J.W. and Belaval, M. 2006 Continuous resistivity profiling to delineate submarine groundwater discharge-Examples and limitations. Leading Edge, 25 (6): 673-792. https://doi.org/10.1190/1.2210056

deGroot-Hedlin, C. and Constable, S. 1990. Occam's inversion to generate smooth, two dimensional models form magnetotelluric data. Geophysics (55): 1613-1624. https://doi.org/10.1190/1.1442813

Loke, M.H. 2015. Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Malaysia. Nyquist, J.E.

Freyer, P.A. and Toran, L. 2005. Stream Bottom Resistivity Tomography to Map Ground Water Discharge, Groundwater, 46 (4): 561-569. https://doi.org/10.1111/j.1745-6584.2008.00432.x PMid:18373670

Perdomo, S.; Carretero, S.; Kruse, E. and Ainchil, J. 2013a. Identificación de la intrusión salina en Santa Teresita (Buenos Aires), mediante la aplicación de métodos eléctricos. In: N. González, E. Kruse, M.M. Trovatto y P. Laurencena (Editores) Temas actuales en hidrología subterránea 2013. EDULP, pp 44-49. La Plata.

Perdomo S., Rodrigues Capítulo L., Kruse E. and Ainchil J., 2013b. Aplicación de tomografías eléctricas en la configuración del acuífero costero en un sector oriental de la Provincia de Buenos Aires. In: N. González, E. Kruse, M.M. Trovatto y P. Laurencena (Editores) Temas actuales en hidrología subterránea 2013. EDULP, pp 57 - 62. La Plata.

Rapaglia, J., Grant, C., Bokuniewicz, H., Pick, T. and Scholten, J. 2015. A GIS typology to locate sites of submarine groundwater discharge. Journal of Environmental Radioactivity, 145(0): 10-18. https://doi.org/10.1016/j.jenvrad.2015.03.016 PMid:25863321

Sasaki, Y. 1992. Resolution of resistivity tomograph inferred from numerical simulation. Geophysical Prospecting, 40: 453-464. https://doi.org/10.1111/j.1365-2478.1992.tb00536.x

Stieglitz, T. 2005. Submarine groundwater discharge into the near-shore zone of the Great Barrier Reef, Australia. Marine Pollution Bulletin, 51(1-4): 51. https://doi.org/10.1016/j.marpolbul.2004.10.055 PMid:15757707

Stieglitz, T.C.; Cook, P.G. and Burnett, W.C., 2010. Inferring coastal processes from regional-scale mapping of 222Radon and salinity: examples from the Great Barrier Reef, Australia. Journal of Environmental Radioactivity, 101(7): 544-552. https://doi.org/10.1016/j.jenvrad.2009.11.012 PMid:20106568

Downloads

Published

2021-06-30

How to Cite

Carretero, S., Perdomo, S., Rapaglia, J., Albino Martínez, C. ., & Kruse, E. (2021). Submarine groundwater discharge detection on the coast of Buenos Aires using 222Rn and geoelectrical methods. Boletín Geológico Y Minero, 132(1-2), 157–166. https://doi.org/10.21701/bolgeomin.132.1-2.016

Issue

Section

Articles