Calibration of the potential evapotranspiration product “MOD16A2” for the Argentinian Pampas Region
DOI:
https://doi.org/10.21701/bolgeomin.132.1-2.017Keywords:
Argentina Pampas Region, calibration, MOD16A2 product, potential evapotranspirationAbstract
Evapotranspiration (ET) is the hydrological variable with the greatest relevance in the Argentina Pampas Region (APR), because through this process a large part of the water that enters as precipitation is lost from the system. Knowing the spatial variability of the ET is essential to be able to include it in hydrological models. An alternative is the use of satellite products. In previous papers, the MOD16A2 product of potential ET (ETp) was evaluated, comparing it with in situ data of twenty-four stations distributed in the APR in 2012, 2013 and 2014, with a total of 3,094 pairs of analyzed data, observing a higher over estimation of 50% throughout the period which could be attributed to the error in the term of net radiation in the ETp equation. Using the same database, in this paper the systematic error found in the MOD16A2 product was corrected by means of a linear regression, using 60% of the data pairs ETp (MOD16A2) of in situ data to calibrate the model and the remaining 40% for its validation. The results showed a decrease in the mean square error of 2.4 to 0.6 mm day-1 and the mean absolute error of 2.2 to 0.5 mm day-1. After correction, the MOD16A2 product improves significantly and can be used for hydrological purposes at the basin scale. It is recommended for evaluating the method in large basins and in other regions of the world to determine if there are systematic errors, and eventually correct them following the procedure proposed here.
Downloads
References
Aliaga, V.S., Ferrelli, F. y Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37, 1237-1247. https://doi.org/10.1002/joc.5079
Allen, R.G., Pereira, L.S., Raes, D. y Smith, M. 1998. Crop evapotranspirationGuidelines for computing crop water requirements. Irrigation and Drainage Paper 56 (97), Rome, Italy.
Autovino, D., Minacapilli, M. y Provenzano, G. 2016. Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy. Agricultural Water Management, 167, 86-94. https://doi.org/10.1016/j.agwat.2016.01.006
Barraza Bernardas, V. D. 2015. Modelos y aproximaciones basadas en información satelital en microondas pasivas para la estimación de la evapotranspiración en áreas boscosas de la Cuenca del Río Bermejo. Tesis doctoral. Biblioteca Digital de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
Carmona, F., Holzman, M., Rivas, R., Degano, F., Kruse, E. y Bayala, M., 2018. Evaluation of two models using CERES data for reference evapotranspiration estimation. Revista de Teledetección, (51), 87-98. https://doi.org/10.4995/raet.2018.9259
Carmona, F. y Rivas, R. 2011. Estimación de la evapotranspiración real mediante datos meteorológicos e imágenes de satélite. Teledetección: Recientes aplicaciones en la región pampeana. Buenos Aires, Argentina.
Carmona, F., Rivas, R. y Caselles, V. 2014. Estimation of daytime downward longwave radiation under clear and cloudy skies conditions over a sub-humid region. Theoretical and Applied Climatology, 281-295. https://doi.org/10.1007/s00704-013-0891-3
Degano, M. F. 2017. Evaluación del producto de evapotranspiración global MOD16 con medidas in situ en la región de la Pampa Húmeda, Argentina. Tesis de Maestría. Facultad de Física, Universidad de Valencia.
Degano, M. F., Rivas, R. E., Sánchez, J. M., Carmona, F. y Niclòs, R. 2018. Assessment of the Potential Evapotranspiration MODIS Product Using Ground Measurements in the Pampas. In 2018 IEEE Biennial Congress of Argentina (ARGENCON), San Miguel de Tucumán, Argentina, 1-5. https://doi.org/10.1109/ARGENCON.2018.8646143 PMid:29296078
Di Bella, C., Rebella, C. y Paruelo, J. 2000. Evapotranspiration estimates using NOAAAVHRR imagery in the Pampa region of Argentina. International Journal of Remote Sensing, 21(4), 791-797. https://doi.org/10.1080/014311600210579
Falasca, S y Forte Lay, J. A. 2003. Cambio en la evapotranspiración potencial de la pradera pampeana (República Argentina) inducido por un período húmedo. Revista Geográfica del Instituto Panamericano de Geografía e Historia, 34, 119-152.
García, A.G., Campos, A.N., Di Bella, C.M. y Posse Beaulieu, G. 2013. Evolución de la evapotranspiración en diferentes coberturas vegetales de la Argentina utilizando productos derivados del sensor MODIS. INTA - Instituto Nacional de Tecnología Agropecuaria. Artículo de divulgación.
Idso, S.B. y Jackson R. D. 1969. Thermal radiation from the atmosphere". Journal Geophysical Research 74: 5397-5403. https://doi.org/10.1029/JC074i023p05397
Kim, H.W., Hwang, K., Mu, Q., Lee, S.O. y Choi, M. 2012. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE Journal of Civil Engineering, 16(2), 229-238. https://doi.org/10.1007/s12205-012-0006-1
Marini, F., Santamaría, M., Oricchio, P., Di Bella y C.M., Basualdo, A. 2017. Estimation of real evapotranspiration (ETR) and potential evapotranspiration (ETP) in the southwest of the Buenos Aires Province (Argentina) using MODIS images. Revista de Teledetección, 48, 29-41. https://doi.org/10.4995/raet.2017.6743
Matteucci, S. D. 2012. Ecorregión Pampa. In Matteucci, S. D., Rodríguez, A. F., Silva, M. and de Haro, C. (ed), Ecorregiones y complejos ecosistémicos argentinos. Gráfica Editora. Universidad de Buenos Aires, Facultad de Arquitectura, Diseño y Urbanismo. Grupo de Ecología del Paisaje y Medio Ambiente. Buenos Aires, Argentina, Cap. 12, 341-495.
Monteith, J. L. y Unsworth, M. H. 1990. Principles of environmental physics. Edward Arnold, London, second edition, 291 pp.
Mu, Q., Zhao, M. y Running, S. W. 2013. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3)". Algorithm Theoretical Basis Document,
Collection 5.
Ocampo, D., Rivas, R, Silicani, M., Carmona, F, Holzman, M. y Mancino, C. 2012. Estimación de la fracción evaporativa a partir de registros de humedad de suelo y un lisímetro de pesada. 8vo Encuentro del "International Center For Earth Sciences"-EICES, Mar del Plata, Argentina. 8.
Oficina de Riesgo Agropecuario (ORA), 02/06/18, http://www.ora.gob.ar/
Organización Meteorológica Mundial 1994. Guía de prácticas hidrológicas. Adquisición de datos, anáductolisis, predicción y otras aplicaciones. WMO-N°168, 5ta edition, pp. 273-303.
Pereyra, F. 2003. Ecorregiones de la Argentina. Servicio Geológico Minero Argentino, Buenos Aires, 189 pp.
Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A. y Dzikiti, S. 2014. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sensing, 6(8), 7406-7423. https://doi.org/10.3390/rs6087406
Rivas R. y Caselles V. 2004. A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sensing of Environment, 93:68-76. https://doi.org/10.1016/j.rse.2004.06.021
Rivas, R., Bayala, M., Carmona, F., Holzman, M., Degano, M. F. y Mancino, C. 2016. Adaptación del modelo de Rivas y Caselles para el cálculo de la evapotranspiración con datos del producto modis MYD11A2. XVII Simposio Internacional En Percepción Remota y Sistemas de Información Geográfica SELPER. Misiones, Argentina, 1397-1404.
Ruhoff, A. L., Paz, A. R. Aragao, L. E., Mu, Q., Malhi, Y., Collischonn, W., Rocha, H. R. y Running, S. W. 2013. Assesment of the MODIS global evapotranspiration using Eddy Covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 58(8), 1658-1676. https://doi.org/10.1080/02626667.2013.837578
Servicio Meteorológico Nacional (SMN), 02/06/18, http://www.smn.gov.ar/
Silicani, M. R. 2015. Diseño, construcción y operación de un lisímetro de bajo costo. Tesis de especialización. Universidad de Cuyo, San Juan, Argentina.
Teuling, A. J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M. y Ciasis, P. 2009. A regional perspective on trends in continental evaporation. Geophysical Research Letters, 36 (2). https://doi.org/10.1029/2008GL036584
Thornthwaite, C.W. 1948. An approach toward a rational classification of Climate. Geographical Review, 38 (1), 55-94. https://doi.org/10.2307/210739
Universidad de Montana, 19/04/17, http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/
Walker, E., García, G. A. y Venturini, V. A. 2018. Actual evapotranspiration estimation over flat lands using soil moisture products from SMAP mission. Revista de Teledetección, 52, 17-26.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.