Hydrogeological research in the Tuyajto Lake at the Flamingo National Reserve (Atacama, Chile)

Authors

  • Christian Herrera Lameli Departamento de Ciencias Geológicas, Universidad Católica del Norte
  • Javier Urrutia Meza Departamento de Ciencias Geológicas, Universidad Católica del Norte
  • Jorge Jódar Bermúdez Aquageo Proyectos
  • Luis Javier Lambán Jiménez Instituto Geológico y Minero de España, Unidad de Zaragoza
  • Emilio Custodio Gimena Real Academia de Ciencias. Grupo de Hidrología Subterránea, Departamento de Ingeniería Civil y Ambiental, Universidad Politécnica de Cataluña
  • Carolina Gamboa Palacios Departamento de Ciencias Geológicas, Universidad Católica del Norte

DOI:

https://doi.org/10.21701/bolgeomin.132.1-2.021

Keywords:

Agua subterránea, Hidrogeología volcánica, Zonas áridas, Laguna Tuyajto, Chile

Abstract


The Tuyajto Lake is a saline lake located in the Andean Altiplano of northern Chile, at the foot of the volcano of the same name. It is fed by springs located on its eastern and northern boundaries. These springs discharge groundwater from a volcanic aquifer. Arid conditions dominate in the area, with an average precipitation of less than 200 mm/year. The tritium content in some groundwater samples shows the contribution of modern recharge to the total groundwater flow. Recharge occurs by infiltration of snowmelt in the austral winter months and to a lesser extent by short but intense precipitation events during the summer. According to the vertical gradients of precipitation and its rainfall isotopic content (δ18O, δ2H), the recharge zone of the springs is located at the northern area of the lake, above 4,900 m a.s.l., along the slopes of the Tuyajto volcano, whereas the recharge to the springs discharging on the eastern area of the lake originates in the adjacent basins of Pampa Colorada and Pampa Las Tecas, at altitudes of between 4,400 and 4,700 m a.s.l. The water of these springs may contain measurable tritium. The chemical composition of groundwater is the result of meteoric water evaporation processes, high temperature water-rock interaction and the dissolution of buried old salt flat deposits. The groundwater flow is shallow, due to the presence of a regional low permeability ignimbrite formation, which precludes the formation of deep convective groundwater flow cells due to the high density. At the local scale, the Laguna Tuyajto behaves as a flow-through system compared to the regional groundwater flow. The persistence of the springs is essential for the existence of the brine sheet and maintaining the ecological conditions for the waterfowl.

Downloads

Download data is not yet available.

References

Alcalá, F.J, Custodio, E. (2008). Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Journal of Hydrology, 359 (1-2): 189-207. https://doi.org/10.1016/j.jhydrol.2008.06.028

Ammann, C., Jenny, B., Kammer, K., Messerli, B. (2001). Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18-29°S). Paleogeography, Paleoclimatology, Paleoecology, 172(3-4): 313-326. https://doi.org/10.1016/S0031-0182(01)00306-6

Backer, M.C. (1981). The nature and distribution of upper Cenozoic ignimbrite centres in the Central Andes. Journal of Volcanology and Geothermal Research, 1981; 11(2-4): 293-315. https://doi.org/10.1016/0377-0273(81)90028-7

Chaffaut I. (1998) Precipitations d'altitude, eaux souterraines et changements climatiques de l'Altiplano Nord-Chilien. Thèse de Doctorat Université Paris XI Orsay: 1-274.

Chong, G. (1988) The Cenozoic saline deposits of the Chilean Andes between 18 00′ and 27 00′ south latitude. In The Southern Central Andes, Springer Berlin Heidelberg: 137-151.

Cortecci, G., Boschetti, T., Mussi, M., Herrera C., Mucchino, C. & Barbieri, M. (en prensa). New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochemical Journal, 39: 547-571. https://doi.org/10.2343/geochemj.39.547

Custodio, E., Llamas, M.R. (1983). Hidrología subterránea. Editorial Omega, Barcelona: 1-2350.

Custodio, E., Herrera, C. (2000). Utilización de la relación Cl/Br como trazador hidrogeoquímico en hidrología subterránea. Boletín Geológico y Minero, 111(4): 49-67.

Custodio, E. (2010). Estimation of aquifer recharge by means of atmospheric chloride deposition balance in the soil. Constributions to Science, 2010, 6(1): 81-97.

Custodio, E., Jódar, J., (2016). Simple solutions for steady-state diffuse recharge evaluation in sloping homogeneous unconfined aquifers by means of atmospheric tracers. Journal of Hydrology, 540: 287-305. https://doi.org/10.1016/j.jhydrol.2016.06.035

DGA (Dirección General de Aguas) (2009). Información Oficial Hidrometeorológica y de Calidad de Aguas (on line). Ministerio de Obras Públicas. Santiago, Chile. http://snia.dga.cl/BNAConsultas.

Duffy, C., Al-Hassan, S. (1988). Groundwater circulation in a closed desert basin: Topographic scaling and climatic forcing. Water Resources Research, 24: 1675-1688. https://doi.org/10.1029/WR024i010p01675

Fan, Y., Duffy, C. J., Oliver, D. S. (1997). Density-driven groundwater flow in closed desert basins: field investigations and numerical experiments. Journal of Hydrology, 196(1): 139-184. https://doi.org/10.1016/S0022-1694(96)03292-1

Geyh, M., Grosjean, M., Nuñez, L., Schotterer, I. (1999). Radiocarbon reservoir effect and the timing of the Late-Glacial/Early Holocene humid phase in the Atacama Desert (Northern Chile). Quaternary Research, 52: 143-153. https://doi.org/10.1006/qres.1999.2060

Giggenbach, W. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52: 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3

Jódar, J., Custodio, E., Liotta M., Lambán, J.L., Martos-Rosillo, S., Sapriza, G., Rigo, T., Herrera, C., (2016a): Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions. Science of the Total Environment, 550: 27-37. https://doi.org/10.1016/j.scitotenv.2015.12.034 PMid:26803681

Jódar, J., Custodio, E., Lambán, J.L., Martos-Rosillo, S., Herrera, C., Sapriza, G., (2016b): Vertical variation in the amplitude of the seasonal isotopic content of rainfall as a tool to jointly estimate the groundwater recharge zone and transit times in the Ordesa and Monte Perdido National Park aquifer system, north-eastern Spain. Science of the Total Environment, 573: 505-517. https://doi.org/10.1016/j.scitotenv.2016.08.117 PMid:27572542

Lindsaya, J.M., de Silva, S., Trumbulla, R., Emmermanna, R., Wemmerc, K. (2001). La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas. Journal of Volcanology and Geothermal Research, 106: 145-173. https://doi.org/10.1016/S0377-0273(00)00270-5

Mardones, L. (1977). Geología e hidrogeología de los salares de Ascotán y Carcote, II Región, Chile. Universidad Católica del Norte. Memoria de Título: 1-234.

Montgomery, E., Rosko, M., Castro, S., Keller, B., Bevacqua, P. (2003). Interbasin underflow between closed Altiplano basins in Chile. Groundwater, 41: 523-531. https://doi.org/10.1111/j.1745-6584.2003.tb02386.x PMid:12873015

NOAA, 2008. National Oceanic and Atmospheric Administrations. National Data Buoy Center (http://tao.ndbc.noaa.gov/proj_overview/pubs/outstand/ mcph1720/mcph1720_ndbc.shtml).

Ramírez, C., Gardeweg, M. (1982). Hoja Toconao, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, No. 54: 1-122.

Risacher, F., Alonso, H., Salazar, C. (1999). Geoquímica de aguas en cuencas cerradas: I, II y III Regiones - Chile, Dirección General de Aguas: 1-461.

Risacher, F., Alonso, H., Salazar, C. (2003). The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Science Reviews, 63(3-4): 249-293. https://doi.org/10.1016/S0012-8252(03)00037-0

Sophocleous, M. (2009). Relationships between groundwater and surface water in the Prairie Wetlands of North America. IAH-Spanish Chapter. October 2009. Zaragoza.

Stern, C., Moreno, H., López-Escobar, L., Clavero, J., Lara, L., Naranjo, J., Parada, M., Skewes, A. (2007). Chilean volcanoes. In: Moreno, T., Gibbons, W. (ed.), Geology of Chile, Geological Society of London: 289-308.

USGS (2015) Earth Explorer. US Geological Survey, Reston, VA. https://earthexplorer.usgs.gov/. Se accedió el 15 de Enero del 2017.

Vuille, M., Ammann. C. (1997). Regional snowfall patterns in the high, arid Andes. Clim. Change., 36: 413-423. https://doi.org/10.1023/A:1005330802974

WMC (2006). Evaluación de impactos hidrológicos producto de la extracción de agua Subterránea - Proyecto Pampa Colorada. Environmental Impact Study for Pampa Colorada (EIA Pampa Colorada). Water Management Consultants, for Minera Escondida Ltda.

Downloads

Published

2021-06-30

How to Cite

Herrera Lameli, C. ., Urrutia Meza, J. ., Jódar Bermúdez, J., Lambán Jiménez, L. J. ., Custodio Gimena, E., & Gamboa Palacios, C. (2021). Hydrogeological research in the Tuyajto Lake at the Flamingo National Reserve (Atacama, Chile). Boletín Geológico Y Minero, 132(1-2), 207–220. https://doi.org/10.21701/bolgeomin.132.1-2.021

Issue

Section

Articles

Funding data

Consejo Nacional de Innovación, Ciencia y Tecnología
Grant numbers Doctorado Nacional / 2015-21150951;Doctorado Nacional / 2016-21160152

Most read articles by the same author(s)