Una opción para el paso a la minería subterránea masiva: la actual metodología aplicada en Chile del “block caving”

Autores/as

  • René Gómez Universidad de Concepción
  • E. Labbé Codelco, División El Teniente

DOI:

https://doi.org/10.21701/bolgeomin.130.1.011

Palabras clave:

esfuerzos, fractura, hundimiento de bloques, minería subterránea

Resumen


El presente artículo es una revisión del método de explotación Block Caving enfocado en el desarrollo que ha tenido principalmente en los yacimientos de Chile, donde son identificadas las características particulares que engloban al método, así como estrategias de planificación llevadas a cabo para optimizar la explotación del recurso mineral en los nuevos entornos mineros. La explotación mediante Block Caving se realiza en yacimientos subterráneos masivos, generalmente cuando el costo debido a la profundidad del yacimiento o características particulares de éste no hacen viable la extracción mediante cielo abierto. La complejidad del método está asociada a la dinámica de hundimiento y colapso natural que se propaga en el macizo rocoso hacia la superficie consecuencia de la extracción del mineral. Actualmente han ido surgiendo yacimientos con nuevos desafíos como lo son menores leyes y mayores profundidades, siendo este último aspecto un parámetro crítico para el desarrollo del método como se ha venido realizando de manera convencional,  enfrentándonos a condiciones de roca más competente, altos esfuerzos inducidos en los frentes de trabajo generando problemas geotécnicos, así como fragmentación más gruesa que genera dificultades en el sistema de manejo de materiales. Para abordar estas problemáticas, en el presente artículo se describen y analizan las diferentes estrategias que han sido evaluadas y aplicadas, así como su evolución en términos de estrategias de socavación inicial de la roca, variantes del método y pre-tratamiento del macizo rocoso para poder lograr la explotación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Araneda, O. and Sougarret, A. 2007. 'Lessons learned in cave mining: 1997 - 2007', International Symposium on Block and Sub-Level Caving Cave Ming Keynote address. The Southern African Institute of Mining and Metallurgy, South Africa, pp. 57-71.

Bartlett, P.J. and Croll, A. 2000. Cave Mining at Premier Diamond Mine, Proceding of Massmin 2000, pp 227-235.

Beck, D., Arndt, S., Thin, I., Stone, C. and Butcher, R. 2006. A conceptual sequence for a block cave in an extreme stress and deformation environment. Procedings of Deep and High Stress Mining 2006.

Beus, M.J., Pariseau, W.G., Stewart, B.M. and Iverson, S.R. 2001. Design of Ore Passes. In: Hustrulid, W.A. and Bullock, R.L. (eds.), Underground Mining Method, 627-634.

Briceño, M., Adams, M. y Castro, R. 2016. Estimación de la Humedad y Profundidad del Agua Barro en Block Caving. 1 er Congreso Internacional en Minería Subterránea: UMining 2016, Santiago, Chile, 324-338.

Brown, E.T. 2007. Block Caving Geomechanics: International Caving Study 1997-2004. Julius Kruttschnitt Mineral Research Centre, The University of Queensland, Australia.

Brunton, I., Lett, J. and Thornhill, T. 2016. Fragmentation prediction and assessment at the ridgeway deeps and Cadia east cave operations. 7th International Conference & Exhibition in Mass Mining: Massmin 2016. The Australasian Institute of Mining and Metallurgy, Sydney, Australia, 151-160.

Butcher, R., Joughin, W. and Stacey, T.R. 2000. A Booklet on Methods of Combating Mudrushes in Diamond and Base Metal Mines. Safety in Mines Research Advisory Committee.

Brzovic, A., Hurtado, J.P. and Marin, N. 2014. Intensity rock mass preconditioning and fragmentation performance at the El Teniente mine, Chile. 3 rd international symposium on block and sublevel caving: Caving 2014, Santiago, Chile, 547-557.

Calder K., Townsend P. y Russell F., 2000. The Palabora Underground Mine Project, Procedings of Massmin 2000, pp 219-225.

Carter, T. G. (1992). A new approach to surface crown pillar design. In Proc. 16th Can. Rock Mechanics Symposium, Sudbury (pp. 75-83).

Castro, R. 2006. Study of the mechanisms of gravity flow for block caving. PhD Thesis, The University of Queensland, Australia.

Castro, C., Báez, F., Arancibia, E. and Barrera, V. 2014. Study of the impact of rock mass preconditioning on a Block Caving Mine Operation. 3rd international symposium on block and sublevel caving: Caving 2014, Santiago, Chile, 515-524.

Castro, R.L. and Paredes, P.S. 2014. Empirical observations of dilution in panel caving. Journal of the Southern African Institute of Mining and Metallurgy, 114 (6), 455-462.

Castro, R. and Pineda, M. 2015. The role of gravity flow in the design and planning of large sublevel stopes. Journal of the Southern African Institute of Mining and Metallurgy, 115 (2), 113-118. https://doi.org/10.17159/2411-9717/2015/v115n2a4

Castro, R., Gómez, R. and Hekmat, A. 2016. Experimental quantification of hang-up for block caving applications. International Journal of Rock Mechanics and Mining Sciences, (85), 1-9. https://doi.org/10.1016/j.ijrmms.2016.02.005

Cochilco, 2014. Factores Clave para el Desarrollo de la Minería en Chile. Ministerio de Minería, Chile.

Codelco, División El Teniente. 2010. Definición de matriz de criticidad para control de agua-barro. Superintendencia Gestión Producción, Codelco, 11/01/18, https://www.codelco.com

De Nicola, R. and Fishwick, M. 2000. 'An Underground Air Blast' - Codelco Chile - Division Salvador. Massmin 2000, Brisbane, Australia, 279-288.

Duplancic, P. and Brady, B.H. 1999. Characterisation of caving mechanisms by analysis of seismicity and rock stress. 9th ISRM Congress. International Society for Rock Mechanics, 1049-1053.

Eadie, B. 2003. A framework for modelling fragmentation in block caving. PhD Thesis, The University of Queensland, Australia. Emol, 2017. Mapa: Cuánto cuesta la energía eléctrica de uso residencial en Chile y el mundo. 19/07/17, http://www.emol.com/noticias/Economia

Encina, V., Baez, F., Geister, F. and Steinberg, J. 2008. Mechanized continuous drawing system: A technical answer to increase production capacity for large block caving mines. 5th International Conference & Exhibition on Mass Mining: Massmin2008, Luleå, Sweden, 553-562.

Flores, G. 2005. Rock mass response to the transition from open pit to underground cave mining. PhD Thesis, JKMRC School of Engineering the University of Queensland.

Flores, G. 2014. Future challenges and why cave mining must change. 3rd international symposium on block and sublevel caving: Caving 2014, Santiago, Chile, 23-52.

Flores, G. and Karzulovic, A. 2002. Benchmarking Report. Geotechnical guidelines for a transition from open pit to underground mining. International caving study II, JKRMC, University of Queensland.

Fuentes, S. and Villegas, F. 2014. Block caving using macro blocks. 3rd International symposium on block and sublevel caving: Caving 2014, Santiago, Chile, 23-52.

Gómez, R., Castro, R.L., Casali, A., Palma, S. and Hekmat, A. 2017. A Comminution Model for Secondary Fragmentation Assessment for Block Caving. Rock Mechanics and Rock Engineering, 50 (11), 3073-3084. https://doi.org/10.1007/s00603-017-1267-2

Hadjigeorgiou, J. and Lessard, J.F. 2007. Numerical investigation of ore pass hang-up phenomena. International journal of rock mechanics & mining sciences, 44 (6), 820-834. https://doi.org/10.1016/j.ijrmms.2006.12.006

Hamrin, H. 2001. Underground mining methods and applications. In: Hustrulid, W.A. and Bullock, R.L. (eds.), Underground Mining Method, 3-14.

Hashim, M. 2011. Particle Percolation in block Caving mines. PhD Thesis, Australia, University of New South Wales, Australia.

Jakubec, J. 2014. Fragmentation estimates using BCF software - Experiences and pitfalls. 3rd international symposium on block and sublevel caving: Caving 2014, Santiago, Chile, 191-200.

Jeffrey, R.G., van As, A., Zhang, X., Bunger, A.P. and Chen, Z.R. 2010. Measurement of hydraulic fracture growth in a naturally fractured orebody for application to preconditioning. Second International Symposium on Block and Sublevel Caving: Caving 2010, Perth, Australia, 647-662. https://doi.org/10.36487/ACG_rep/1002_45_Jeffrey

Karzulovic, A. 1998. Evaluación Geotécnica Métodos de Socavación Previa y Avanzada Mina El teniente, estudio DT-CG-98-003, División El Teniente, Codelco-Chile.

Kvapil, D.R. 2008. Gravity flow in sublevel and panel caving - A common sense approach. Luleå University of Technology.

Labbé, E. 2014. Catastro de oportunidades I&D en innovación tecnológica para minería de block/panel caving. Memoria de título, Universidad de Chile, Chile.

Lang, B. 1994. Span design for entry-type excavations. MSc Thesis, University of British Columbia, Canada.

Laubscher, D. 1994. Cave mining - The state of the art. International Journal of Geomechancis and Mining Sciences. 94(10), 279-293.

Laubscher, D.R. 2000. Block caving manual. Prepared for the International Caving Study, JKMRC and Itasca Consulting Group, Brisbane.

Lorig, L. 2004. Understanding gravity flow for mix and dilution modeling at Henderson Mine. MassMin 2004, Santiago, Chile, 231-237.

Mathews, K. E., Hoek, E., Wyllie, D. C., and Stewart, S. B. V. (1981). Prediction of stable excavation spans at depths below 1000m in hard rock mines. CANMET Report, DSS Serial No. OSQ80-00081.

Ministerio de Minería, 2016. Cuenta Pública 2016.

Pardo, C. and Villascusa, 2012. Methodology for back analysis of intensive rock mass damage at the Teniente Mine, 6th International Conference & Exhibition on Mass Mining, Sudbury, Canada.

Pfitzner, M.J., Westman, E., Morgan, M. and Finn, D. 2010. Estimation of rock mass changes induced by hydraulic fracturing and cave mining by double difference passive tomography. Second International Symposium on Block and Sublevel Caving: Caving 2010, Perth, Australia, 677-684. https://doi.org/10.36487/ACG_rep/1002_47_Pfitzner

Pierce, M. 2009. A model for gravity flow of fragment rock in block caving mines. PhD Thesis, The University of Queensland, Australia.

Pierce, M.E., Waetherley, D.K. and Kojovic, T.A. 2010. Hybrid methodology for secondary fragmentation prediction in cave mines. Second International Symposium on Block and Sublevel Caving: Caving 2010, Perth, Australia, 567-582. https://doi.org/10.36487/ACG_rep/1002_39_Weatherley-Pierce

Rojas E., Molina R., Bonani A. y Constanzo H. 2000. The preundercut caving method at El Teniente Mine, Codelco - Chile, Procedings of Massmin 2000.

Sahupala, H., Brannon, C., Annavarapu, S. and Osborne, K. 2008. Recovery of extraction level pillars in the Deep Ore Zone (DOZ) block cave, PT Freeport Indonesia. 5th International Conference & Exhibition on Mass Mining: Massmin2008, Luleå, Sweden, 191-202.

Samosir, E., Basuni, J., Widijanto, E. and Syaifullah, T. 2008. The Management of Wet Muck at PT Freeport Indonesia's Deep Ore Zone Mine. 5th International Conference & Exhibition on Mass Mining: Massmin2008, Lulea, Sweden, 323-332.

Silveira, A.C. 2004. Undercutting at E26 lift 2 Northparkes. Procedings of Massmin 2004, pp 410-414.

Susaeta, A., Rubio, E., Pais, G. and Enriquez, J. 2008. Dilution behaviour at Codelco panel cave mines. 5th International Conference & Exhibition on Mass Mining: Massmin2008, Lulea, Sweden, 167-178.

Syaifullah, T., Widijanto, E. and Srikant, A. 2006. Water Issues in DOZ Block Cave Mine, PT Freeport Indonesia. Water in Mining Conference.

Trueman, R., Pierce M. y Wattimena, R. 2002. Quantifying stresses and support requirements in the undercut and production level drifts of block and panel caving mines. "Undercutting Workshop", Phoenix, 2008. Rio Tinto, CODELCO, Freeport McMoRan. Presentación. https://doi.org/10.1016/S1365-1609(02)00060-6

Vallejos, J., Basaure, K., Palma, S. and Castro, R.L. 2017. Methodology for evaluation of mud rush risk in block caving mining. Journal of the Southern African Institute of Mining and Metallurgy, 117 (5), 491-497. https://doi.org/10.17159/2411-9717/2017/v117n5a11

Wattimena, R.K. 2003. Designing undercut and production level drifts of block caving mines. PhD Thesis, JKMRC School of Engineering. The University of Queensland.

Descargas

Publicado

2019-03-30

Cómo citar

Gómez, R., & Labbé, E. (2019). Una opción para el paso a la minería subterránea masiva: la actual metodología aplicada en Chile del “block caving”. Boletín Geológico Y Minero, 130(1), 181–198. https://doi.org/10.21701/bolgeomin.130.1.011

Número

Sección

Artículos