Deep aquifers as strategic groundwater reservoir in Spain

Authors

  • Carlos Camuñas Palencia Instituto Geológico y Minero de España - CSIC
  • Miguel Mejías Moreno Instituto Geológico y Minero de España - CSIC
  • Jorge Hornero Díaz Instituto Geológico y Minero de España - CSIC
  • Fernando Ruíz Bermudo Instituto Geológico y Minero de España - CSIC
  • Olga García Menéndez Instituto Geológico y Minero de España - CSIC

DOI:

https://doi.org/10.21701/bolgeomin/133.3/001

Keywords:

Deep aquifer, Groundwater, Strategic water reserves, Climate Change

Abstract


The objective of this paper is to establish a definition of deep aquifers, develop a methodological proposal to help select them as strategic groundwater reserves and develop a first inventory of deep aquifers in peninsular Spain, organized by hydrographic districts. The basic premises followed to consider a permeable formation as a deep aquifer are: water table depth greater than 300 m in free aquifers or the top of the permeable formation in the case of confined aquifers. A deep aquifer is also considered to be the lower horizon of very thick aquifers (from 300 m), from which the most superficial horizon is used. The definition of the potentially favorable areas and the initial characterization is based on a compilation and synthesis of geological and hydrogeological information, structured in 5 large blocks: location and identification, geology, hydrogeology, current status and bibliography. For its evaluation, a flowchart has been proposed with the basic lines of the evaluation process. The relevant aspects for suitability would be: stratigraphy and structural geology, prior knowledge of the conceptual model and water renewal, quality, viability of exploitation, effects, final knowledge, and management and governance. The final result allows the aquifer to be classified into three categories: strategic groundwater reserve, punctual reserve or non-viable reserve. The inventory carried out encompasses a total of 64 deep aquifers located in 13 basin districts. Finally, as example, three deep aquifers are presented: Amblés Valley, Madrid detritic aquifer and El Maestrazgo.

Downloads

Download data is not yet available.

References

Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F. S., Krause, S., Hannah, D. M., Conner, L., Ellison, D., Godsey, S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R. J., Hampton, T., Gu, S., Buhman, M., Sayedi, S. S., Ursache, O., Chapin, M., Henderson, K. D., and Pinay, G. (2019). Human domination of the global water cycle absent from depictions and perceptions. Nature Geoscience, 12(7), 533-540. https://doi.org/10.1038/s41561-019-0374-y

Alcalde, J., Martí, D., Calahorrano, A., Marzan, I., Ayarza, P., Carbonell, R., Juhlin, C., and Pérez-Estaún, A. (2013). Active seismic characterization experiments of the Hontomín research facility for geological storage of CO 2 , Spain. International Journal of Greenhouse Gas Control, 19, 785-795. https://doi.org/10.1016/j.ijggc.2013.01.039

Alley, W. M. (2007). Another Water Budget Myth: The Significance of Recoverable Ground Water in Storage. Ground Water, 45(3), 251-251. Alley, W. M., Bair, S. E., and Wireman, M. (2013). Deep groundwater. Ground Water, 51, 653-654. https://doi.org/10.1111/gwat.12098

Antón-Pacheco, C., Araguás, L., Ballesteros, B., Barnolas, A., Casas, A., Gil, I., Gumiel, J. C., López-Gutiérrez, J., Mejías, M., Plata, J. L., Samsó, J. M., Jiménez, I., Marina, M., Mediato, J., and Núñez, I. (2005). Investigación sobre el comportamiento hidrogeológico de formaciones acuíferas profundas. Aplicación a la Unidad Hidrogeológica 08.07, (El Maestrazgo). Desarrollo metodológico. Recopilación y síntesis de la información: Informe preliminar. Centro de documentación del IGME: H1-002-05, 535 págs.

Bachu, S. (2015). Review of CO 2 storage efficiency in deep saline aquifers. International Journal of Greenhouse Gas Control, 40, 188-202. https://doi.org/10.1016/j.ijggc.2015.01.007

Cadavid, S. (1977). Mapa estructural del techo del basamento del borde meridional de la Sierra de Guadarrama. Boletín Geológico y Minero, LXXXVIII (VI), 494-496.

Canérot, J. (1974). Recherches géologiques aux confins des chaînes ibérique et catalane (Espagne). Géologie des confins Ibéro-Catalans. Doctoral thesis, Toulouse University, 517 pp.

Custodio, E. (2015). Aspectos hidrológicos, ambientales, económicos, sociales y éticos del consumo de reservas de agua subterránea en España: minería del agua subterránea en España. UPC/Aqualogy, Barcelona, 488 pp. http://hdl.handle.net/2117/111272

Custodio, E., Andreu-Rodes, J. M., Aragón, R., Estrela, T., Ferrer, J., García-Aróstegui, J. L., Manzano, M., Rodríguez-Hernández, L., Sahuquillo, A., and del Villar, A. (2016). Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. Science of the Total Environment, 559, 302-316. https://doi.org/10.1016/j.scitotenv.2016.02.107

Diao, Y., Yang, Y., Li, X., Hu, L., Zheng, C., and Ma, X. (2021). Management on developing deep underground space for CO2 geological storage. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 41(4), 1267-1273.

García-Orellana, J., García-Solsona, E., Masqué, P., Ballesteros, B., López, J., Mejías, M., and Marina, M. (2006). Evaluación de la descarga de un manantial costero mediante isótopos del radio: La Fuente de Alcossebre (Castellón). In: Las aguas subterráneas en los países mediterráneos. IGME, Málaga. 301-309.

Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M. B. (2016). The global volume and distribution of modern groundwater. Nature Geoscience, 9(2), 161-167. https://doi.org/10.1038/ngeo2590

Goderniaux, P., Brouyere, S., Fowler, H. J., Blenkinsop, S., Therrien, R., Orban, P., and Dassargues, A. (2009). Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. Journal of Hydrology, 373, 122-138. https://doi.org/10.1016/j.jhydrol.2009.04.017

Goderniaux, P., Brouyere, S., Wildemeersch, S., Therrien, R., and Dassargues, A. (2015). Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer. Journal of Hydrology, 528, 108-121. https://doi.org/10.1016/j.jhydrol.2015.06.018

Godfrey, S., Hailemichael, G., and Serele, C. (2019). Deep groundwater as an alternative source of water in the Ogaden Jesoma sandstone aquifers of Somali region, Ethiopia. Water, 11(8), 1735. https://doi.org/10.3390/w11081735

González-Ramón, A., Rodríguez-Arévalo, J., Martos-Rosillo, S., and Gollonet, J. (2013). Hydrogeological research on intensively exploited deep aquifers in the 'Loma de Úbeda' area (Jaén, southern Spain). Hydrogeology Journal, 21, 887-903. https://doi.org/10.1007/s10040-013-0957-4

Heredia, J., Pardo-Iguzquiza, E., and González-Ramón, A. (2014). Stochastic Modelling of the 3D Geometry of a Faulted and Folded Deep Carbonate Aquifer: Loma de Úbeda (Southern Spain). Mathematics of Planet Earth, 767-770. https://doi.org/10.1007/978-3-642-32408-6_165

Hubbert, M. K. (1940). The Theory of Ground Water Motion. Journal of Geology, 48, 785-944. https:// www.jstor.org/stable/30057101 https://doi.org/10.1086/624930

IGME (1980). Proyecto para la Investigación hidrogeológica de la cuenca del Duero. Sistemas nº 8 y 12. Estudio Hidrogeológico del Valle Amblés (Ávila). Informe Técnico, 58 págs.+19 págs. (anexos).

IGME (1995). Mapa Geológico de la Península Ibérica, Baleares y Canarias a escala 1:1.000.000 (http://info.igme.es/cartografiadigital/geologica/Geologicos1MMapa.aspx?Id=Geologico1000_(1994)&language=es)

IGME-DGA (2009). Encomienda de Gestión para la realización de trabajos científico-técnicos de apoyo a la sostenibilidad y protección de las aguas subterráneas. Actividad 2. Apoyo a la caracterización adicional de las masas de agua subterránea en riesgo de no cumplir los objetivos medioambientales en 2015. Demarcación Hidrográfica del Duero. Masa de agua subterránea 64 Valle de Amblés, 68 págs.

IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA, Cambridge University Press, 1-32.

IPCC (2019). Resumen para responsables de políticas. In: El cambio climático y la tierra: Informe especial del IPCC sobre el cambio climático, la desertificación, la degradación de las tierras, la gestión sostenible de las tierras, la seguridad alimentaria y los flujos de gases de efecto invernadero en los ecosistemas terrestres [P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley (eds.)]. En prensa.

ITGE (1991). Mapa Hidrogeológico de España a escala 1:200.000. Hoja 44 - Ávila. Memoria y Mapa.

ITGE (1998). Acuífero de Sierra Gorda y Polje de Zafarraya. Atlas hidrogeológico de Andalucía. Instituto Tecnológico Geominero de España, Consejería de Obras Públicas y Transportes de la Junta de Andalucía, Consejería de Trabajo e Industria de la Junta de Andalucía.

Ivanov, V. K., Spirin, E. V., Menyajlo, A. N., Chekin, S. Y., Lovachev, S. S., Korelo, A. M., Tumanov, K. A., Solomatin, V. M., Lopatkin, A. V., and Adamov, E. O. (2020). Safety of radioactive waste from two-component nuclear energy system disposed in a deep geological repository for permanent storage: Radiological migration equivalence. Radiation and Risk, 29(4), 8-32. https://doi.org/10.21870/0131-3878-2020-29-4-8-32

Jezierski, H. J. (2013). Storage of radioactive and hazardous waste in deeply seated geological formations - summary of experiences and plans for the future - the leading topic of the lst PURL. Conference Przeglad Geologiczny, 61(12), 731.

Kang, M., Ayars, J., and Jackson, R. (2019). Deep groundwater quality in the southwestern United States. Environmental Research Letters, 14(3), 034004. https://doi.org/10.1088/1748-9326/aae93c

Kharaka, Y. K., Thordsen, J. J., Hovorka, S. D., Nance, H. S., Cole, D. R., Phelps, T. J., and Knauss, K. G. (2009). Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA. Applied Geochemistry, 24, 1106-1112. https://doi.org/10.1016/j.apgeochem.2009.02.010

Krawczyk, C. M., Stiller, M., Bauer, K., Norden, B., Herninges, J., Ivanova, A., and Huenges, E. (2019). 3-D seismic exploration across the deep geothermal research platform Groß Schönebeck north of Berlin/Germany. Geotherm Energy, 7(1), 1-18. https://doi.org/10.1186/s40517-019-0131-x

Lapworth, D. J., Zahid, A., Taylor, R. G., Burgess, W. G., Shamsudduha, M., Ahmed, K. M., Mukherjee A., Gooddy D. C., Chatterjee, D., and MacDonald, A. M. (2018). Security of deep groundwater in the Coastal Bengal Basin revealed by tracers. Geophysical Research Letters, 45, 8241-8252. https://doi.org/10.1029/2018GL078640

Li, Y., and Pang, Z. (2017). Hydrogeochemical characteristics of deep saline aquifers in sedimentary basins in China and implications for CO2 geological storage with emphasis on total dissolved solids (TDS) and water type. Greenhouse Gases: Science and Technology, 7(1), 53-64. https://doi.org/10.1002/ghg.1645

Llamas, M. R., Custodio, E., de la Hera, A., and Fornés, J. M. (2015). Groundwater in Spain: increasing role, evolution, present and future. Environmental Earth Sciences, 73, 2567-2578. https://doi.org/10.1007/s12665-014-4004-0

López Gutiérrez, J., García Menéndez, O., and Ballesteros Navarro, B. J. (2010). El origen del mercurio presente en el acuífero costero de la Plana de Castellón (Este de España). Boletín Geológico y Minero, 121(3), 279-298.

López-Vera, F. (1977). Modelo de sedimentación de los materiales detríticos de la fosa de Madrid. XXXII Congreso Luso-español para el Progreso de la Ciencia, 42(4), 257-266.

Marín Lechado, C., González Ramón, A., Ruiz Constán, A., Moreno Martínez, J. A., and Cifuentes Sánchez, V. J. (2018). El Modelo geológico 3D del acuífero de La Loma de Úbeda. SIAGA. Huelva, 24-27 de octubre de 2018.

Martínez-Alfaro, P. E. (1980). Un primer análisis de la permeabilidad y el grado de anisotropía de los materiales detríticos de la fosa del Tajo. Boletín Geológico y Minero, 91, 645-648.

Mejías, M., García-Orellana, J., Plata, J. L., Marina, M., García-Solsona, E., Ballesteros, B., Masqué, P., López, J., and Fernández-Arrojo, C. (2008). Methodology of hydrogeological characterization of deep carbonate aquifers as potential reservoirs of groundwater. Case of study: The Jurassic aquifer of El Maestrazgo (Castellón, Spain). Environmental Geology, 54(3), 521-536. https://doi.org/10.1007/s00254-007-0845-0

Miró, J. J., Estrela, M. J., Olcina-Cantos, J., and Martin-Vide, J. (2021). Future Projection of Precipitation Changes in the Júcar and Segura River Basins (Iberian Peninsula) by CMIP5 GCMs Local Downscaling. Atmosphere, 12, 879. MITECO (2020). Informe de seguimiento de los planes hidrológicos de cuenca y de los recursos hídricos en España. 191 págs. https://doi.org/10.3390/atmos12070879

Moutahir, H., Bellot, P., Monjo, R., Bellot, J., García, M., and Touhami, I. (2017). Likely effects of climate change on groundwater availability in a Mediterranean region of Southeastern Spain. Hydrological Processes, 31, 161-176. https://doi.org/10.1002/hyp.10988

Moutahir, H., Fernández-Mejuto, M., Andreu, J. M., Touhami, I., Ayanz, J., and Bellot, J. (2019). Observed and projected changes on aquifer recharge in a Mediterranean semi-arid area, SE Spain. Environmental Earth Sciences, 78(24), 1-14. https://doi.org/10.1007/s12665-019-8688-z

Pereira, N., Carneiro, J. F., Araujo, A., Bezzeghoud, M., and Borges, J. (2014). Seismic and structural geology constraints to the selection of CO 2 storage sites-The case of the onshore Lusitanian basin, Portugal. Journal of Applied Geophysics, 102, 21-38. https://doi.org/10.1016/j.jappgeo.2013.12.001

Pérez Gago, M., Ballesteros Navarro, B. J., García Menéndez, O., Grima Olmedo, J., and López Gutiérrez, J. (2001). Contenido en nitratos de las aguas subterráneas en la plana de Valencia. Situación actual, evolución temporal y repercusión sobre La Albufera. In: A. Ballester Rodríguez, J. Grima Olmedo, J. A. López Geta, and L. Rodríguez Hernandez (eds.), Investigación, gestión y recuperación de acuíferos contaminados, 119-129.

Post, V., Groen, J., and Kooi, H. (2013). Offshore fresh groundwater reserves as a global phenomenon. Nature, 504, 71-78. https://doi.org/10.1038/nature12858

Renau-Pruñorosa, A., García-Menéndez, O., Ibáñez, M., Vázquez-Suñé, E., Boix, C., Ballesteros-Navarro, B. J., Hernández-García, M., Morrel, I., and Hernández, F. (2020). Identification of aquifer recharge sources as the origin of emerging contaminants in intensive agricultural areas. La Plana de Castellón, Spain. Water, 12, 731. https://doi.org/10.3390/w12030731

Tarkowski, R., and Uliasz-Misiak, B. (2006). Possibilities of CO 2 Sequestration by Storage in Geological Media of Major Deep Aquifers in Poland. Chemical Engineering Research and Design, 84(9), 776-780. https://doi.org/10.1205/cherd.05144

Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage bassins. Journal of Geophysical Research, 68(16), 4795-4812. https://doi.org/10.1029/JZ068i016p04795

Touhami, I., Chirino, E., Andreu, J. M., Sánchez, J. R., Moutahir, H., and Bellot, J. (2015). Assessment of climate change impacts on soil water balance and aquifer recharge in a semiarid region in south east Spain. Jounal of Hydrology, 527, 619-629. https://doi.org/10.1016/j.jhydrol.2015.05.012

Tsang, C. F., and Niemi, A. (2013). Deep hydrogeology: a discussion of issues and research needs. Hydrogeology Journal, 21(8), 1687-1690. https://doi.org/10.1007/s10040-013-0989-9

UNESCO (1985). Aguas subterráneas en rocas duras. Proyecto 8.6 del Programa Hidrológico Internacional. 305 págs.

UNESCO, UN-Water (2020). United Nations World Water Development Report 2020: Water and Climate Change, Paris, UNESCO. 235 págs.

Wawerzinek, B., Buness, H., von Hartmann, H., and Tanner, D. C. (2021). S-wave experiments for the exploration of a deep geothermal carbonate reservoir in the German Molasse Basin. Geothermal Energy, 9(6), 1-21. https://doi.org/10.1186/s40517-021-00189-w

Yuan, W., Chen, Z., Grasby, S. E., and Little, E. (2021). Closed-loop geothermal energy recovery from deep high enthalpy systems. Renewable Energy, 177, 976-991. https://doi.org/10.1016/j.renene.2021.06.028

Downloads

Published

2022-09-30

How to Cite

Camuñas Palencia, C., Mejías Moreno, M., Hornero Díaz, J., Ruíz Bermudo, F., & García Menéndez, O. (2022). Deep aquifers as strategic groundwater reservoir in Spain. Boletín Geológico Y Minero, 133(3), 7–26. https://doi.org/10.21701/bolgeomin/133.3/001

Issue

Section

Articles

Most read articles by the same author(s)