Ambient Noise Tomography studies for geothermal exploration in the Canary Islands

Authors

  • Iván Cabrera-Pérez Instituto Volcanológico de Canarias (INVOLCAN)
  • Luca D’Auria Instituto Volcanológico de Canarias (INVOLCAN)
  • Jean Soubestre Université Grenoble Alpes
  • David Martínez van Dorth Instituto Tecnológico y de Energías Renovables (ITER)
  • Germán Cervigón-Tomico Instituto Volcanológico de Canarias (INVOLCAN)
  • Alba Martín-Lorenzo Instituto Volcanológico de Canarias (INVOLCAN)
  • Monika Przeor Instituto Tecnológico y de Energías Renovables (ITER)
  • Rubén García-Hernández Instituto Volcanológico de Canarias (INVOLCAN)
  • Víctor Ortega Instituto Volcanológico de Canarias (INVOLCAN)
  • Germán D. Padilla Instituto Volcanológico de Canarias (INVOLCAN)
  • José Barrancos Instituto Volcanológico de Canarias (INVOLCAN)
  • Eleazar Padrón Instituto Volcanológico de Canarias (INVOLCAN)
  • Nemesio M. Pérez Instituto Volcanológico de Canarias (INVOLCAN)

DOI:

https://doi.org/10.21701/bolgeomin/134.3/001

Keywords:

Ambient Noise Tomography, Geothermal Exploration, Gran Canaria, Tenerife, La Palma

Abstract


Ambient Noise Tomography is a geophysical exploration technique that has proven to be highly efficient for studies at different scales and for multiple purposes, such as geothermal exploration. In this article, we introduce this technique by reviewing its various steps. Additionally, we present some examples of applications from studies conducted in the Canary Islands (specifically in Tenerife, Gran Canaria, and La Palma) for geothermal exploration purposes.The study realized in Gran Canaria reveals a series of low-velocity zones in the southern and eastern parts of the island, which could be linked to convective cells. In Tenerife, a low-velocity zone has been observed, potentially associated with a superficial clay cap that could facilitate the ascent of gases to the surface. Finally, the study carried out in La Palma highlights the existence of two low-velocity zones in the southern part of the island, possibly related to  hydrothermally altered clay zones, indicating a circulation of hydrothermal fluids.

Downloads

Download data is not yet available.

References

Ablay, G. J., and Martí, J. (2000). Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands. Journal of Volcanology and Geothermal research, 103(1-4), 175-208. https://doi.org/10.1016/S0377-0273(00)00224-9

Ancochea, E., Fuster, J., Ibarrola, E., Cendrero, A., Coello, J., Hernan, F., ... and Jamond, C. (1990). Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. Journal of Volcanology and Geothermal Research, 44(3-4), 231-249. https://doi.org/10.1016/0377-0273(90)90019-C

Aster, R. C., Borchers, B., and Thurber, C. H. (2018). Parameter estimation and inverse problems. Elsevier. Bacells, R., Barrera, J. L., and Gómez Sainz de Ajam, J. A. (1990). Mapa geológico digital continuo e. 1:25.000, zona canarias-gran canaria. (zona-2912).

Barrera Morate, J. L., and García Moral, R. (2011). Mapa Geológico de Canarias. GRAFCAN, Santa Cruz de Tenerife.

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., ... and Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239-1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x

Blanco-Montenegro, I., Torta, J. M., García, A., and Araña, V. (2003). Analysis and modelling of the aeromagnetic anomalies of Gran Canaria (Canary Islands). Earth and Planetary Science Letters, 206(3-4), 601-616. https://doi.org/10.1016/S0012-821X(02)01129-9

Bodin, T., Sambridge, M., Rawlinson, N., and Arroucau, P. (2012). Transdimensional tomography with unknown data noise. Geophysical Journal International, 189(3), 1536-1556. https://doi.org/10.1111/j.1365-246X.2012.05414.x

Brenguier, F., Shapiro, N. M., Campillo, M., Nercessian, A., and Ferrazzini, V. (2007). 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophysical research letters, 34(2), L02305. https://doi.org/10.1029/2006GL028586

Cabrera-Pérez, I., D'Auria, L., Soubestre, J., Barrancos, J., Padilla, G. D., and Pérez, N. M. (2021). A nonlinear multiscale inversion approach for ambient noise tomography. Geophysical Journal International, 225(2), 1158-1173. https://doi.org/10.1093/gji/ggaa574

Cabrera-Pérez, I., Centeno, R., Soubestre, J., D'Auria, L., Rivera, M., and Machacca, R. (2022). Ambient noise tomography of Misti volcano, Peru. Journal of Volcanology and Geothermal Research, 426, 107538. https://doi.org/10.1016/j.jvolgeores.2022.107538

Cabrera-Pérez, I., Soubestre, J., D'Auria, L., van Dorth, D. M., Ledo, J., Piña-Varas, P., ... and Pérez, N. M. (2023). Ambient noise tomography of Gran Canaria island (Canary Islands) for geothermal exploration. Geothermics, 108, 102609. https://doi.org/10.1016/j.geothermics.2022.102609

Calò, M., Kinnaert, X., and Dorbath, C. (2013). Procedure to construct three-dimensional models of geothermal areas using seismic noise cross-correlations: application to the Soultz-sous-Forêts enhanced geothermal site. Geophysical Journal International, 194(3), 1893-1899. https://doi.org/10.1093/gji/ggt205

Camacho, A. G., Montesinos, F. G., and Vieira, R. (2000). Gravity inversion by means of growing bodies. Geophysics, 65(1), 95-101. https://doi.org/10.1190/1.1444729

Camacho, A. G., Fernández, J., González, P. J., Rundle, J. B., Prieto, J. F., and Arjona, A. (2009). Structural results for La Palma island using 3-D gravity inversion. Journal of Geophysical Research: Solid Earth, 114(B5), B05411. https://doi.org/10.1029/2008JB005628

Canales, J. P., Dañobeitia, J. J., and Watts, A. B. (2000). Wide-angle seismic constraints on the internal structure of Tenerife, Canary Islands. Journal of volcanology and geothermal research, 103(1-4), 65-81. https://doi.org/10.1016/S0377-0273(00)00216-X

D'Auria, L., Koulakov, I., Prudencio, J., Cabrera-Pérez, I., Ibáñez, J. M., Barrancos, J., ... and Peréz, N. M. (2022). Rapid magma ascent beneath La Palma revealed by seismic tomography. Scientific Reports, 12(1), 17654. https://doi.org/10.1038/s41598-022-21818-9

De Siena, L., Sammarco, C., Cornwell, D. G., La Rocca, M., Bianco, F., Zaccarelli, L., and Nakahara, H. (2018). Ambient seismic noise image of the structurally controlled heat and fluid feeder pathway at Campi Flegrei caldera. Geophysical Research Letters, 45(13), 6428-6436. https://doi.org/10.1029/2018GL078817

Di Paolo, F., Ledo, J., Ślęzak, K., van Dorth, D. M., Cabrera-Pérez, I., and Pérez, N. M. (2020). La Palma island (Spain) geothermal system revealed by 3D magnetotelluric data inversion. Scientific reports, 10(1), 1-8. https://doi.org/10.1038/s41598-020-75001-z

Fang, H., Yao, H., Zhang, H., Huang, Y. C., and van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophysical Journal International, 201(3), 1251-1263. https://doi.org/10.1093/gji/ggv080

García-Yeguas, A., Koulakov, I., Ibanez, J. M., and Rietbrock, A. (2012). High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data. Journal of Geophysical Research: Solid Earth, 117(B9), B09309. https://doi.org/10.1029/2011JB008970

Gouédard, P., Stehly, L., Brenguier, F., Campillo, M., De Verdière, Y. C., Larose, E., ... and Weaver, R. L. (2008). Cross-correlation of random fields: Mathematical approach and applications. Geophysical prospecting, 56(3), 375-393. https://doi.org/10.1111/j.1365-2478.2007.00684.x

Ibáñez, J. M., Rietbock, A., and García-Yeguas, A. (2008). Imaging an active volcano edifice at Tenerife Island, Spain. Eos, Transactions American Geophysical Union, 89(32), 289-290. https://doi.org/10.1029/2008EO320001

Ke, G., Dong, H., Kristensen, Å., and Thompson, M. (2011). Modified Thomson-Haskell matrix methods for surface-wave dispersion-curve calculation and their accelerated root-searching schemes. Bulletin of the Seismological Society of America, 101(4), 1692-1703. https://doi.org/10.1785/0120100187

Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., and Jones, C. (2008). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2091), 777-793. https://doi.org/10.1098/rspa.2007.0277

Kim, S., Tkalčić, H., Rhie, J., and Chen, Y. (2016). Intraplate volcanism controlled by back-arc and continental structures in NE Asia inferred from transdimensional Bayesian ambient noise tomography. Geophysical Research Letters, 43(16), 8390-8398. https://doi.org/10.1002/2016GL069483

Koulakov, I., D'Auria, L., Prudencio, J., Cabrera-Pérez, I., Barrancos, J., Padilla, G. D., ... and Ibáñez, J. M. (2023). Local earthquake seismic tomography reveals the link between crustal structure and volcanism in Tenerife (Canary Islands). Journal of https://doi.org/10.1029/2022JB025798

Geophysical Research: Solid Earth, 128(3), e2022JB025798.

Krastel, S., and Schmincke, H. U. (2002). Crustal structure of northern Gran Canaria, Canary Islands, deduced from active seismic tomography. Journal of Volcanology and Geothermal Research, 115(1-2), 153-177. https://doi.org/10.1016/S0377-0273(01)00313-4

Ledo, J., Garcia-Merino, M., Larnier, H., Slezak, K., Pina-Varas, P., Marcuello, A., ... and Sumita, M. (2021). 3D electrical resistivity of Gran Canaria island using magnetotelluric data. Geothermics, 89, 101945. https://doi.org/10.1016/j.geothermics.2020.101945

Lehujeur, M., Vergne, J., Schmittbuhl, J., Zigone, D., Le Chenadec, A., and EstOF Team. (2018). Reservoir imaging using ambient noise correlation from a dense seismic network. Journal of Geophysical Research: Solid Earth, 123(8), 6671-6686. https://doi.org/10.1029/2018JB015440

Levshin, A., Ratnikova, L., and Berger, J. O. N. (1992). Peculiarities of surface-wave propagation across central Eurasia. Bulletin of the Seismological Society of America, 82(6), 2464-2493. https://doi.org/10.1785/BSSA0820062464

Li, C., Yao, H., Fang, H., Huang, X., Wan, K., Zhang, H., and Wang, K. (2016a). 3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China. Seismological Research Letters, 87(4), 882-892. https://doi.org/10.1785/0220150257

Li, Z., Ni, S., Zhang, B., Bao, F., Zhang, S., Deng, Y., and Yuen, D. A. (2016b). Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophysical Research Letters, 43(10), 4954-4961. https://doi.org/10.1002/2016GL068895

Lin, F. C., Ritzwoller, M. H., Townend, J., Bannister, S., and Savage, M. K. (2007). Ambient noise Rayleigh wave tomography of New Zealand. Geophysical Journal International, 170(2), 649-666. https://doi.org/10.1111/j.1365-246X.2007.03414.x

Martins, J. E., Weemstra, C., Ruigrok, E., Verdel, A., Jousset, P., and Hersir, G. P. (2020). 3D S-wave velocity imaging of Reykjanes Peninsula high-enthalpy geothermal fields with ambient-noise tomography. Journal of Volcanology and Geothermal Research, 391, 106685. https://doi.org/10.1016/j.jvolgeores.2019.106685

Masterlark, T., Haney, M., Dickinson, H., Fournier, T., and Searcy, C. (2010). Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR, and ambient noise tomography. Journal of Geophysical Research: Solid Earth, 115(B2), B02409. https://doi.org/10.1029/2009JB006324

Mordret, A., Rivet, D., Landès, M., and Shapiro, N. M. (2015). Three-dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion Island) from ambient seismic noise. Journal of Geophysical Research: Solid Earth, 120(1), 406-427. https://doi.org/10.1002/2014JB011654

Nakata, N., Gualtieri, L., and Fichtner, A. (Eds.). (2019). Seismic ambient noise. Cambridge University Press. https://doi.org/10.1017/9781108264808

Nolet, G. (2008). A Breviary of Seismic Tomography Cambridge Univ. Press, Cambridge, UK, 324. https://doi.org/10.1017/CBO9780511984709

Padrón, E., Pérez, N. M., Hernández, P. A., Sumino, H., Melián, G., Barrancos, J., ... and Padilla, G. (2012). Helium emission at Cumbre Vieja volcano, La Palma, Canary Islands. Chemical Geology, 312, 138-147. https://doi.org/10.1016/j.chemgeo.2012.04.018

Peterson, J. (1993). Observation and Modeling of Seismic Background Noise. USGS Technical Report 93-322, 95 pp. https://doi.org/10.3133/ofr93322

Piña-Varas, P., Ledo, J., Queralt, P., Marcuello, A., Bellmunt, F., Hidalgo, R., and Messeiller, M. (2014). 3-D magnetotelluric exploration of Tenerife geothermal system (Canary Islands, Spain). Surveys in Geophysics, 35(4), 1045-1064. https://doi.org/10.1007/s10712-014-9280-4

Planès, T., Obermann, A., Antunes, V., and Lupi, M. (2020). Ambient-noise tomography of the Greater Geneva Basin in a geothermal exploration context. Geophysical Journal International, 220(1), 370-383. https://doi.org/10.1093/gji/ggz457

Prudencio, J., Ibáñez, J. M., Del Pezzo, E., Martí, J., García-Yeguas, A., and De Siena, L. (2015). 3D attenuation tomography of the volcanic island of Tenerife (Canary Islands). Surveys in Geophysics, 36, 693-716. https://doi.org/10.1007/s10712-015-9333-3

Rodríguez, F., Pérez, N. M., Padrón, E., Melián, G., Pina-Varas, P., Dionis, S., ... and Hidalgo, R. (2015). Surface geochemical and geophysical studies for geothermal exploration at the southern volcanic rift zone of Tenerife, Canary Islands, Spain. Geothermics, 55, 195-206. https://doi.org/10.1016/j.geothermics.2015.02.007

Rodríguez, F., Pérez, N. M., Melián, G. V., Padrón, E., Hernández, P. A., Asensio-Ramos, M., ... and D'Auria, L. (2021). Exploration of deep-seated geothermal reservoirs in the Canary Islands by means of soil CO2 degassing surveys. Renewable Energy, 164, 1017-1028. https://doi.org/10.1016/j.renene.2020.09.065

Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., and Fehler, M. C. (2005). Surface wave tomography from microseisms in Southern California. Geophysical Research Letters, 32(14), L14311. https://doi.org/10.1029/2005GL023155

Sambridge, M., Gallagher, K., Jackson, A., and Rickwood, P. (2006). Trans-dimensional inverse problems, model comparison and the evidence. Geophysical Journal International, 167(2), 528-542. https://doi.org/10.1111/j.1365-246X.2006.03155.x

Saygin, E., and Kennett, B. L. (2010). Ambient seismic noise tomography of Australian continent. Tectonophysics, 481(1-4), 116-125. https://doi.org/10.1016/j.tecto.2008.11.013

Schmincke, H. U., and Sumita, M. (2010). Geological evolution of the Canary Islands: a young volcanic archipelago adjacent to the old African Continent. Goerres-Druckerei und Verlag, 196 p. ISBN: 978-3-86972-005-0.

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4), 1591-1595. https://doi.org/10.1073/pnas.93.4.1591

Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615-1618. https://doi.org/10.1126/science.1108339

Shomali, Z. H., and Shirzad, T. (2015). Crustal structure of Damavand volcano, Iran, from ambient noise and earthquake tomography. Journal of Seismology, 19(1), 191-200. https://doi.org/10.1007/s10950-014-9458-8

Snieder, R. (2004). Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4), 046610. https://doi.org/10.1103/PhysRevE.69.046610

Spica, Z., Legrand, D., Iglesias, A., Walter, T. R., Heimann, S., Dahm, T., ... and Pardo, M. (2015). Hydrothermal and magmatic reservoirs at Lazufre volcanic area, revealed by a high-resolution seismic noise tomography. Earth and Planetary Science Letters, 421, 27-38. https://doi.org/10.1016/j.epsl.2015.03.042

Stankiewicz, J., Ryberg, T., Haberland, C., and Natawidjaja, D. (2010). Lake Toba volcano magma chamber imaged by ambient seismic noise tomography. Geophysical Research Letters, 37(17), L17306. https://doi.org/10.1029/2010GL044211

Wahida, A., Wijaya, H., Yudistira, T., and Sule, M. R. (2018, July). Ambient noise tomography for geothermal exploration, a case study of WWs geothermal field. In AIP Conference Proceedings (Vol. 1987, No. 1, p. 020101). AIP Publishing LLC. https://doi.org/10.1063/1.5047386

Wang, Z., and Dahlen, F. A. (1995). Validity of surface-wave ray theory on a laterally heterogeneous earth. Geophysical Journal International, 123(3), 757-773. https://doi.org/10.1111/j.1365-246X.1995.tb06888.x

Wapenaar, K. (2004). Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Physical review letters, 93(25), 254301. https://doi.org/10.1103/PhysRevLett.93.254301

Weaver, R. L., and Lobkis, O. I. (2001). Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies. Physical Review Letters, 87(13), 134301. https://doi.org/10.1103/PhysRevLett.87.134301

Woodhouse, J. H. (1974). Surface waves in a laterally varying layered structure. Geophysical Journal International, 37(3), 461-490. https://doi.org/10.1111/j.1365-246X.1974.tb04098.x

Yang, Y., Ritzwoller, M. H., Levshin, A. L., and Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1), 259-274. https://doi.org/10.1111/j.1365-246X.2006.03203.x

Yang, Y., Ritzwoller, M. H., and Jones, C. H. (2011). Crustal structure determined from ambient noise tomography near the magmatic centers of the Coso region, southeastern California. Geochemistry, Geophysics, Geosystems, 12(2), Q02009. https://doi.org/10.1029/2010GC003362

Zheng, D., Saygin, E., Cummins, P., Ge, Z., Min, Z., Cipta, A., and Yang, R. (2017). Transdimensional Bayesian seismic ambient noise tomography across SE Tibet. Journal of Asian Earth Sciences, 134, 86-93. https://doi.org/10.1016/j.jseaes.2016.11.011

Downloads

Published

2023-09-30

How to Cite

Cabrera-Pérez, I., D’Auria, L., Soubestre, J., Martínez van Dorth, D., Cervigón-Tomico, G., Martín-Lorenzo, A., Przeor, M., García-Hernández, R., Ortega, V., Padilla, G. D., Barrancos, J., Padrón, E., & Pérez, N. M. (2023). Ambient Noise Tomography studies for geothermal exploration in the Canary Islands. Boletín Geológico Y Minero, 134(3), 7–25. https://doi.org/10.21701/bolgeomin/134.3/001

Issue

Section

Articles

Funding data

Ministerio de Ciencia, Innovación y Universidades
Grant numbers TERMOVOLCAN (RTC- 2017–6627-3)

Most read articles by the same author(s)